CHARACTERIZATION OF THE SOLUTION OF THE DIOPHANTINE EQUATION $X^2 + Y^2 = 2Z^2$

SEDDIK ABDELALIM1 AND HASSAN DIANY2*

Abstract. In this paper, we are interested to characterize the solutions of the diophantine equation $x^2 + y^2 = 2z^2$ by using the arithmetic technicals.

1. Introduction

The diophantine equation is interested by a lot of Mathematicians. As Bennett characterize the solutions of the diophantine equation $x^{2n} + y^{2n} = z^n$ [2] in 2004, Frits Beukers studied the diophantine equation $Ax^p + By^q = Cz^r$ [1] in 1998 and Nils Bruin [3] search the solution of the diophantine equation $x^9 + y^8 = z^3$ and $xyz = 0$ in 1999. In our paper we are interested to search the solution of the diophantine equation $x^2 + y^2 = 2z^2$.

2. Characterization of The Solution of The Diophantine Equation $x^2 + y^2 = 3z^2$

In this section we show the following result which characterizes the solution of the diophantine equation $x^2 + y^2 = 3z^2$.

Theorem 2.1. The diophantine equation $x^2 + y^2 = 3z^2$ has only one solution $(0, 0, 0)$ in \mathbb{Z}^3.

Proof. Consider the set of triples (x_0, y_0, z_0) solutions of the equation $x^2 + y^2 = 3z^2$ such that $x_0 y_0 \neq 0$. Assume that $d = x_0 \wedge y_0$, then $x_0 = dx_1$, $y_0 = y_1d$ and $x_1 \wedge y_1 = 1$ and since (x_0, y_0, z_0) is the solution of the equation $x^2 + y^2 = 3z^2$ then $z_0 = z_1d$ and the triplet (x_1, y_1, z_1) is solution of the diophantine equation $x^2 + y^2 = 3z^2$. So we have two cases, the first one is $x_1 \equiv 0 \text{mod} 3$ and the second is $x_1 \equiv 1 \text{mod} 3$ or $x_1 \equiv -1 \text{mod} 3$. The first case implies that $x_1^2 \equiv 0 \text{mod} 3$ and since $x_1 \wedge y_1 = 1$ then $y_1 \equiv 1 \text{mod} 3$ or $y_1 \equiv -1 \text{mod} 3$ which is implies that $y_1^2 \equiv 1 \text{mod} 3$. We deduce that $x_1^2 + y_1^2 \equiv 1 \text{mod} 3$ which is absurd because $x_1^2 + y_1^2 = 3z_1^2$. And the second case implies that $x_1^2 \equiv 1 \text{mod} 3$ We have $y_1^2 \equiv 1 \text{mod} 3$ or $y_1^2 \equiv 0 \text{mod} 3$ this implies that $x_1^2 + y_1^2 \equiv 1 \text{mod} 3$ or $x_1^2 + y_1^2 \equiv 2 \text{mod} 3$ which is absurd because $x_1^2 + y_1^2 = 3z_1^2$.

* Corresponding author.

2010 Mathematics Subject Classification. 13F05, 13C10, 13C11, 13F30, 13D05, 16D40, 16E10, 16E60.

Key words and phrases. Arithmetic elliptic curve, Diophantine, Diophantine equations.
3. Characterization of The Solution of The Diophantine Equation \(x^2 + y^2 = 2z^2\)

In this paragraph we solve the diophantine equation \(x^2 + y^2 = 2z^2\) in \(\mathbb{Z}^3\).

Theorem 3.1. Let the diophantine equation \((E) : x^2 + y^2 = 2z^2\) then the following properties are equivalents:

(i) \((x, y, z)\) is the solution of \((E)\) and \(x \land y = 1\)

(ii) \(|x| = |−b^2 + 2bc + c^2|, |y| = |b^2 + 2bc - c^2|, |z| = |b^2 + c^2|\) or \(|x| = \frac{|−b^2 + 2bc + c^2|}{2}, |y| = \frac{|b^2 + 2bc - c^2|}{2}, |z| = \frac{|b^2 + c^2|}{2}\)

Proof. (ii) \(\implies\) (i) We have:

\[
x^2 + y^2 = (-b^2 + 2bc + c^2)^2 + (b^2 + 2bc - c^2)^2
= (2bc - (b^2 - c^2))^2 + (2bc + (b^2 - c^2))^2
= 2(4(bc)^2 + (b^2 - c^2)^2)
= 2(b^2 + c^2)^2
= 2z^2
\]

(i) \(\implies\) (ii)

If \(y\) is even and \(x \land y = 1\) then \(x\) is odd. Therefore \(y^2\) is even and \(x^2\) is odd then \(x^2 + y^2 = 2z^2\) is odd contradiction.

We deduce that \(x, y\) are odds We have \(x = 2k_1 + 1\) and \(y = 2k_2 + 1\) then

\[
x^2 + y^2 = (2k_1 + 1)^2 + (2k_1 + 1)^2
= 4k_1^2 + 4k_1 + 1 + 4k_2^2 + 4k_2 + 1
= 4(k_1^2 + k_1 + k_2^2 + k_2) + 2
= 2z^2
\]

which is implies that \(z^2 = 2(k_1^2 + k_1 + k_2^2 + k_2) + 1\)

Then \(z\) is odd.

Assume that \(x^2 > z^2 > y^2\) then \(|x| > |y| > |z|\). Let set \(z \land x = d\). Since \(y^2 = 2z^2 - x^2\) then \(d^2\) divide \(y^2\) so \(y = kd\) which is implies that \(d\) divides \(x \land y = 1\) then \(x \land z = 1\).

We can deduce that \(z \land x = 1\) and \(z \land y = 1\) \((a_0)\)

It is obvious that \(\frac{|x| - |z|}{2}, \frac{|x| + |z|}{2}, \frac{|z| - |y|}{2}, \frac{|z| + |y|}{2} \in \mathbb{Z}\)

Let set \(\frac{|x| - |z|}{2} \land \frac{|x| + |z|}{2} = d\) then \(d\) divides \(\frac{|x| - |z|}{2} + \frac{|x| + |z|}{2} = |x|\) and \(d\) divides \(-\frac{|x| - |z|}{2} + \frac{|x| + |z|}{2} = |z|\) which is implies that \(d\) divides \(|x \land |z|| = 1\)

so \(\frac{|x| - |z|}{2} \land \frac{|x| + |z|}{2} = 1\) \((a_1)\)

Let set \(\frac{|x| - |y|}{2} \land \frac{|x| + |y|}{2} = d\) then \(d\) divides \(\frac{|x| - |y|}{2} + \frac{|x| + |y|}{2} = |z|\) and \(d\) divides \(-\frac{|x| - |y|}{2} + \frac{|x| + |y|}{2} = |y|\) which is implies that \(d\) divides \(|z \land |y|| = 1\)

so \(\frac{|x| - |y|}{2} \land \frac{|x| + |y|}{2} = 1\) \((a_2)\)

We put
CHARACTERIZATION OF THE SOLUTIONS OF THE DIOPHANTINE EQUATION $X^2 + Y^2 = 2Z^3$

$\frac{|x|-|z|}{2} \land \frac{|z|-|y|}{2} = a > 0$ (b_1)

$\frac{|x|+|z|}{2} \land \frac{|z|+|y|}{2} = b > 0$ (b_2)

$\frac{|x|-|z|}{2} \land \frac{|z|-|y|}{2} = c > 0$ (b_3)

$\frac{|x|+|z|}{2} \land \frac{|z|+|y|}{2} = d > 0$ (b_4)

Since $x^2 - z^2 = z^2 - y^2$, (a_1) and (a_2) show that:

$\frac{|x|-|z|}{2} = ab$ (a_3)

$\frac{|x|+|z|}{2} = cd$ (a_4)

$\frac{|z|-|y|}{2} = ac$ (a_5)

$\frac{|z|+|y|}{2} = bd$ (a_6)

We have $|x| > |z| > |y|$ then $\frac{|x|+|z|}{2} > \frac{|z|+|y|}{2}$ so $cd > bd$ therefore $c > b$ it means $c - b > 0$ (b_5)

$\frac{|x|}{2} = ab + cd$

$\frac{|y|}{2} = bd - ac$

$\frac{|z|}{2} = ac + bd$

then $cd - ab = ac + bd \implies cd - bd = ac + ab$ then

$d(c - b) = a(b + c)$

1st case

$c - b$ is odd since (a_1), (a_3), (a_4) then $a \land d = 1$ and $b \land c = 1$ then $c - b \land c + b = 1$ because $c - b$ is odd since $c - b > 0$, $a > 0$, $c > b > 0$ we deduce that

$d = b + c$

$a = c - b$

then

$\frac{|x|}{2} = ab + cd = -b^2 + 2cb + c^2$

$\frac{|y|}{2} = bd - ac = b^2 + 2cb - c^2$

$\frac{|z|}{2} = c^2 + b^2$

2nd case

$c - b$ is even then $\frac{c-b}{2} \land \frac{c+b}{2} = 1$ because $b \land c = 1$ and $a \land d = 1$. Since $c - b > 0$, $a > 0$, $c > b > 0$ we deduce that

$d = \frac{c + b}{2}$

$a = \frac{c - b}{2}$

then

$\frac{|x|}{2} = ab + cd = -\frac{b^2 + 2cb + c^2}{2}$

$\frac{|y|}{2} = bd - ac = \frac{b^2 + 2cb - c^2}{2}$

$\frac{|z|}{2} = \frac{c^2 + b^2}{2}$
Acknowledgements. We would thank Professor Mostafa Zeriouh for his helpful comments and suggestions.

References

1 Labo TAGESUP Department of Mathematical and Computer Sciences, Faculty of Sciences Ain Choc, University of Hassan II Casablanca, B.P 5366 Maarif, Morocco.
E-mail address: seddikabd@hotmail.com

2 Department of Mathematical and Computer Sciences, Faculty of Sciences Ain Choc, University of Hassan II Casablanca, B.P 5366 Maarif, Morocco.
E-mail address: diany.hassan@yahoo.fr