The Group Idempotents in a Partial Galois Extension

Xiao-Long Jiang\(^1\) and George Szeto\(^2\)*

Abstract. Let \((R, \alpha_G)\) be a partial Galois extension with a partial action \(\alpha_G\) of a finite group \(G\), \(B\) the Boolean ring generated by \(\{1_g | g \in G\}\) where \(1_g\) is the central idempotent associated with \(g \in G\). Let \(e \neq 0 \in B\) and \(G(e) = \{g \in G | e1_g \neq 0\}\). We call \(e\) a group idempotent if \(G(e)\) is a subgroup of \(G\). It is shown that if \(e\) is a group idempotent, then \((Re, \alpha_{G(e)})\) is a partial Galois extension induced by \(e\). Thus the set of these partial Galois extensions in \((R, \alpha_G)\) is computed, and a structure theorem for \((R, \alpha_G)\) is obtained.

1. Introduction and Preliminaries

Galois theory for rings has been intensively investigated in [1, 3, 4, 7], and recently generalized to partial Galois extensions for rings due to many applications of a partial action of a group on a ring ([2, 5, 6, 7, 8, 9]). In [8], let \(B(R)\) be the Boolean semigroup generated by \(\{1_g | g \in G\}\) under the multiplication of \(R\) where \(1_g\) is the central idempotent associated with \(g \in G\), \(e \in B(R)\), and \(G(e) = \{g \in G | e1_g \neq 0\}\). It is shown that if \(e\) is a minimal element in \(B(R)\) and invariant under the partial action \(\alpha_g\) for each \(g \in G\), then \(G(e)\) is a group such that \(Re\) is a Galois extension of \((Re)^{G(e)}\) with Galois group \(G(e)\) (see Proposition 6 in [8]). The group \(G(e)\) plays an important role for the structure of a partial Galois extension \((R, \alpha_G)\) as given by Theorem 3.8 in [8]. In the present paper, let \((R, \alpha_G)\) be a partial Galois extension with a partial action \(\alpha_G\) and \(B\) the Boolean ring generated by \(\{1_g | g \in G\}\). For any non-zero element \(e \in B\), we call \(e\) a group idempotent if \(G(e)\) is a subgroup of \(G\). We shall show some properties of a group idempotent and that if \(e\) is a group idempotent, then \((Re, \alpha_{G(e)})\) is a partial Galois extension in \((R, \alpha_G)\) such that \(G(e)\) is the group \(K \subset G\) maximal with \((Re, \alpha_K)\) as a partial Galois extension. Thus the set of these partial Galois extensions induced by an idempotent in \((R, \alpha_G)\) is computed and a structure theorem of \((R, \alpha_G)\) is obtained.

Let \(R\) be a ring with 1 and \(G\) a finite group with identity \(1_G\). As defined in [5], \((R, \alpha_G)\) is a ring with a partial action \(\alpha_G\) if \(\alpha_g : D_{g^{-1}} \rightarrow D_g\) is a ring isomorphism where \(D_{g^{-1}}\) and \(D_g\) are ideals of \(R\) for all \(g \in G\) such that (1) \(D_{1_G} = R\) where

\[\text{Date:} \text{Received: Aug 25, 2014; Accepted: Oct 29, 2014}\]

* Corresponding author.

2010 Mathematics Subject Classification. Primary 13B05; Secondary 16W22.

Key words and phrases. Partial Galois extension, Boolean ring, Central idempotent.
α_{1_G} is the identity automorphism of R; (2) $\alpha_g(D_g^{-1} \cap D_h) = D_g \cap D_{gh}$ for all $g,h \in G$; (3) $(\alpha_g \alpha_h)(r) = \alpha_{gh}(r)$ for every $r \in (D_{h^{-1}} \cap D_{(gh)^{-1}})$. Assume that $D_g = R1_g$ where 1_g is a central idempotent in R for each $g \in G$. Denote $\{r \in R|\alpha_g(r1_g^{-1}) = r1_g\}$ for all $g \in G$ by R^G_g. Then (R, α_G) is called a partial Galois extension of R^G_g if there exist $\{x_i; y_i \in R|i = 1, \ldots, n\}$ for some integer n such that $\sum_{i=1}^{n} x_i \alpha_g(y_i1_g^{-1}) = \delta_{g1}1_R$ for $g \in G$, where $\{x_i; y_i\}$ is called a partial Galois system for R. We shall employ the following identity $\alpha_g(1_h1_g^{-1}) = 1_{gh}1_g$ for all $g, h \in G$ ([5], page 79).

2. Group Idempotents

By keeping the notations in section 2, (R, α_G) denotes a partial Galois extension. Let B be the Boolean ring generated by $\{g|g \in G\}$ with the usual partial order $e \leq f$ when $e = fe$. Since G is finite, B is finite with minimal elements $\{E_i|i = 1, \ldots, m\}$ for some integer m denoted by M. Recall that for an $e \neq 0 \in B, G(e) = \{g \in G|e1_g \neq 0\}$ and e is called a group idempotent if $G(e)$ is a subgroup of G. By the canonical form of an element $e \in B, e = \prod_{i \in I_e} E_i$ where $I_e \subset \{1, \ldots, m\}$. In this section, we shall show some properties of M.

Lemma 2.1. Let $M = \{E_i|i = 1, \ldots, m\}$ be the set of minimal elements in B. Then $E_i = \prod_{g \in G} 1_g \neq 0$ with a maximal number of factors 1_g.

Proof. For any $e \neq 0 \in B, e$ is a sum of products of 1_g for some $g \in G$ and a product of 1_g in the sum is less than e, so $E_i = \prod_{g \in G} 1_g \neq 0$ with a maximal number of factors 1_g.

The following is a characterization of a group idempotent in M.

Lemma 2.2. For any $E \in M, E$ is a group idempotent if and only if $E \in R^{\alpha_G(e)}$.

Proof. See Proposition 6 in [8].

Theorem 2.3. (1) Let $e \neq 0 \in R^{\alpha_G(e)}$. If $e1_g1_h \neq 0$ for all $g, h \in G(e)$, then $G(e)$ is a subgroup of G. (2) For any $e \neq 0 \in B, e \in M$ if and only if $\prod_{g \in G} 1_g \neq 0$ with a maximal number of factors 1_g for all $g \in G(e)$.

Proof. (1) Let $g \in G(e)$. Since $\alpha_g(e1_g^{-1}) = e1_g \neq 0, g^{-1} \in G(e)$. Also for any $g, h \in G(e), \alpha_g(e1_h1_g^{-1}) = \alpha_g(e1_h1_g^{-1}) = \alpha_g(e1_g^{-1})\alpha_g(1_h1_g^{-1}) = (e1_g)(1_{gh}1_g) = e1_{gh}1_g \neq 0$. By hypothesis, $e1_h1_g^{-1} \neq 0$, so $e1_{gh} \neq 0$; and so $gh \in G(e)$. Thus $G(e)$ is a group. (2) Since for any minimal element E of $B, E = \prod_{g \in G} 1_g \neq 0$ with a maximal number of factors 1_g for $g \in G$ by Lemma 2.1, $E = \prod_{g \in G} 1_g \neq 0$ for all $g \in G(e)$. Thus For any $e \neq 0 \in B, e \in M$ if and only if $\prod_{g \in G} 1_g \neq 0$ with a maximal number of factors 1_g for all $g \in G(e)$.

Next we show that $G(e)$ can be computed from $G(E_i)$ where $e = \sum_{i \in I} E_i$ for some $I \subset \{1, \ldots, m\}$.
Theorem 2.4. Let $e \in B, e = \sum_{i \in I} E_i$ where $I \subset \{1, \ldots, m\}$. Then, $G(e)$ is a group if and only if $\bigcup_{i \in I} G(E_i)$ is a group.

Proof. It suffices to show that $G(e) = \bigcup_{i \in I} G(E_i)$. In fact, for any $g \in G(e), e I_g \neq 0$, so $(\sum_{i \in I} E_i) I_g \neq 0$. Hence $E_i I_g \neq 0$ for some $i \in I$. Thus $g \in G(E_i)$; and so $G(e) \subset \bigcup_{i \in I} G(E_i)$. Conversely, for any $g \in \bigcup_{i \in I} G(E_i), g \in G(E_i)$ for some $i \in I$, so $E_i I_g \neq 0$. But $G(e) = \sum_{i \in I} G(E_i)$ and $E_i E_j = E_i \delta_{ij}$ for $i, j \in I$, so $e I_g \neq 0$. Thus $g \in G(e)$. This completes the proof.

Recall that $M = \{E_1, \ldots, E_m\}$ is the set of minimal elements in B. We want to show that any α_h for an $h^{-1} \in G(E_i)$ maps E_i in M to an element in M.

Theorem 2.5. Let $E \in M$ and $h^{-1} \in G(E)$, then $\alpha_h(E h^{-1}) \in M$.

Proof. By Lemma 2.1, $E = \prod_{g \in G} 1_g \neq 0$ with a maximal number of factors 1_g, so for any $h^{-1} \in G(E), 1_h^{-1}$ is a factor of E. Hence $E h^{-1} = E \neq 0$; and so $\alpha_h(E h^{-1}) = \alpha_h(\prod_{g \in G(E)} 1_g 1_h^{-1}) = (\prod_{g \in G(E)} 1_g 1_h^{-1}) \neq 0$. We claim that $(\prod_{g \in G(E)} 1_g 1_h^{-1}) 1_g 1_h$ is in M. It suffices to show that for any $q \notin hG(E), (\prod_{g \in G(E)} 1_g 1_h^{-1}) = 0$. Applying α_h^{-1} to $(\prod_{g \in G(E)} 1_g 1_h^{-1}) q 1_h 1_h^{-1}$, we have $\alpha_h^{-1}(\prod_{g \in G(E)} 1_g 1_h^{-1}) q 1_h 1_h^{-1} = E 1_h^{-1} 1_h^{-1} q = E 1_h^{-1} q$. But $q \notin hG(E), \text{ so } h^{-1} q \notin G(E)$. Thus $E 1_h^{-1} q = 0$. Noting that α_h^{-1} is an isomorphism, we conclude that $(\prod_{g \in G(E)} 1_g 1_h^{-1}) q = 0$; that is, $\alpha_h(E h^{-1})$ is in M. This completes the proof.

3. Partial Galois Extensions

Keeping the notations and definitions in section 2, we shall show that any group idempotent e induces a partial Galois extension $(R e, \alpha_G(e))$. Thus we can show that the map $e \rightarrow (R e, \alpha_G(e))$ is a one-to-one correspondence between the set of group idempotents and the set of the partial Galois extensions induced by a group idempotent with a partial action of a subgroup of G maximal for the partial Galois extension $R e$. Also we obtain a structure theorem for (R, α_G) as a direct sum of these partial Galois extensions.

Theorem 3.1. Let e be a group idempotent. Then $e \in R^G$ and $(R e, \alpha_G(e))$ is a partial Galois extension such that $G(e)$ is the subgroup K of G maximal for the partial Galois extension $(R e, \alpha_K)$.

Proof. Let $e = \sum_{i \in I} E_i$ for some $I \subset \{1, \ldots, m\}$. Then $G(e) = \bigcup_{i \in I} G(E_i)$ by Theorem 2.4. For any $h \in G(e)$, since $G(e)$ is a group, h^{-1} is in $G(e)$. Hence there exists an $i \in I$ such that $E_i I_{h^{-1}} \neq 0$. By Theorem 2.5, $\alpha_h(E_i 1_{h^{-1}}) = (\prod_{g \in G(E_i)} 1_g 1_h^{-1}) E_i 1_h$. Noting that $\{hg, hI \in G(E_i)\} \subset G(e)$ such that $(\prod_{g \in G(E_i)} 1_g 1_h^{-1}) E_i 1_h \neq 0$, we have that the minimal idempotent $(\prod_{g \in G(E_i)} 1_g 1_h)$ is a term of e. Moreover, for each $i \in I$ such that $E_i 1_{h^{-1}} = 0, \alpha_h(E_i 1_{h^{-1}}) = 0$. Thus $\alpha_h(e 1_{h^{-1}}) = \alpha_h(\sum_{i \in I} (E_i 1_{h^{-1}})) = \sum_{i \in I} \alpha_h(E_i 1_{h^{-1}}) = e 1_h$; and so e is in R^G. By hypothesis,
\((R, \alpha_G)\) is a partial Galois extension, so there exist \(\{x_i; y_i \in R | i = 1, \ldots, n\}\) for some integer \(n\) such that \(\sum_i x_i \alpha_G(y_i 1_R) = \delta_1 1_R\). Thus \(\sum_i e \sum_i x_i \alpha_G(y_i 1_R^{-1}) = e \sum_i x_i \alpha_G(y_i 1_R^{-1}) = e \delta_1 1_R\) for each \(g \in G(e)\). This implies that \((Re, \alpha_{G(e)})\) is a partial Galois extension. Moreover, let \((Re, \alpha_K)\) be a partial Galois extension with a partial action of a subgroup \(K\). Then \(e1_k \neq 0\) for each \(k \in K\). Thus \(K \subseteq G(e)\); and so \(G(e)\) is the subgroup \(K\) of \(G\) maximal for the partial Galois extension \((Re, \alpha_K)\).

Corollary 3.2. Let \(\lambda : e \rightarrow (Re, \alpha_{G(e)})\) for a group idempotent \(e \in B\). Then \(\lambda\) is a one-to-one correspondence between the set of group idempotents in \(B\) and the set of partial Galois extensions as given in Theorem 3.1.

Proof. This is an immediate consequence of Theorem 3.1.

Recall that for any non-zero \(e \in B\), \(e = \sum_{i \in I_e} E_i\) where \(E_i \in M\) and \(I_e \subset \{1, \ldots, m\}\). We shall give an equivalent condition for \((R, \alpha_G)\) as a direct sum of the partial Galois extensions as given in Theorem 3.1.

Lemma 3.3. Let \(e, f \in B\) be distinct group idempotents such that \(e = \sum_{i \in I_e} E_i\) and \(f = \sum_{j \in I_f} E_j\). Then, \(ef = 0\) if and only if \(G(E_i) \neq G(E_j)\) for any \(i \in I_e\) and \(j \in I_f\).

Proof. Noting that \(E_i\) and \(E_j\) are minimal elements in \(B\), we have that \(E_i = E_j\) if and only if \(G(E_i) = G(E_j)\). Also \(E_i E_j = 0\) for different \(E_i\) and \(E_j\), so \(ef = 0\) if and only if \(E_i E_j = 0\) for any \(i \in I_e\) and \(j \in I_f\). This is equivalent to \(G(E_i) \neq G(E_j)\) for any \(i \in I_e\) and \(j \in I_f\).

Theorem 3.4. Let \((R, \alpha_G)\) be a partial Galois extension. Then, \((R, \alpha_G) = \oplus \sum_{i=1}^k (Re_i, \alpha_{G(e_i)})\) a direct sum of partial Galois extensions as given in Theorem 3.1 if and only if \(G(E_s) \neq G(E_t)\) for any \(s \in I_{e_i}\) and \(t \in I_{e_j}\) for any \(i \neq j\) where \(\{e_i, | i = 1, \ldots, k\}\) for some integer \(k\) are group idempotents summing to \(1_R\).

Proof. \((\rightarrow)\). Since \((R, \alpha_G)\) is a direct sum of partial Galois extensions as given in Theorem 3.1, \(e_i e_j = 0\) for any \(i \neq j\). Thus \(G(E_s) \neq G(E_t)\) for any \(s \in I_{e_i}\) and \(t \in I_{e_j}\) for any \(i \neq j\) by Lemma 3.3 and \(\{e_i, | i = 1, \ldots, k\}\) for some integer \(k\) are group idempotents summing to \(1_R\).

\((\leftarrow)\). By hypothesis, \(\{e_i, | i = 1, \ldots, k\}\) for some integer \(k\) are group idempotents, so \((Re_i, \alpha_{G(e_i)})\) is a partial Galois extension for each \(i\) as given in Theorem 3.1. Moreover, \(G(E_s) \neq G(E_t)\) for each \(i\) as given in Theorem 3.1. Thus the proof is complete.
Remark To compute the Boolean ring B generated by $\{1_g | g \in G\}$, it suffices to compute the set of all minimal elements $\{E_i | i = 1, \ldots, m\}$ by the canonical form of an element in B. Then $G(e)$ can be computed from $G(E_i)$ by Theorem 2.4. Thus the set of all group idempotents can be computed also by Theorem 2.4.

We conclude the present paper with an example to demonstrate the computation.

Example Let (R, α_G) be the partial Galois extension as given by Example 6.3 in [5]: $R = \sum_{i=1}^6 Ae_i$ where A is a commutative Galois algebra with Galois cyclic group G with a generator g of order 6, and $\{e_i | i = 1, \ldots, 6\}$ are orthogonal non-zero idempotents summing to 1_R. The partial action α_G on R is defined by: $\alpha_G : A(e^{6-i}) \to A(e^i)$ for each i. Then every non-identity element e_i is a minimal element in B so that $M = \{1_g^61_g, 1_g^61_g^2, 1_g^61_g^3, 1_g^61_g^4, 1_g^61_g^5\}$. Thus there are three proper group idempotents: $E_1 = \{1_g^61_g + 1_g^61_g^2, E_2 = 1_g^61_g^2 + 1_g^61_g^4, E_3 = 1_g^61_g^3\}$; and so there are three proper partial Galois extensions of (R, α_G) by Theorem 3.1.

Acknowledgement
This paper was done at Sun Yat-sen University, Guangzhou, China in Summer, 2014 when the second author visited the Mathematics Department of Sun Yat-sen University, and supported by a Research Excellence Award at Bradley University. The second author would like to thank Sun Yat-sen University for her hospitality and the award.

References

1 Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
E-mail address: mcsjxl@mail.sysu.edu.cn
2 Department of Mathematics, Bradley University, Peoria, Illinois 61625 U.S.A.
E-mail address: szeto@fsmail.bradley.edu