CONSTRUCTION OF AN AUTOMORPHISM OF AN ABELIAN GROUP THAT SATISFIES THE PROPERTY OF THE WEAK EXTENSION WITHOUT SATISFYING THE PROPERTY OF THE EXTENSION

S. ABDELALIM, M. ZERIOUH AND M. ZIANE

Abstract. In this paper, we construct an automorphism of an abelian group which has the property of the weak extension without possessing the property of the extension.

1. Introduction

Throughout this paper, \(\mathcal{Ab} \) is a category of abelian groups, \(o(x) \) will denote the order of the element \(x \) and \(p \) is a prime number.

Let \(A \in \mathcal{Ab} \), an automorphism \(\alpha \) of \(A \) has the weak extension property if for all \(B \in \mathcal{Ab} \), for all monomorphism \(\lambda : A \rightarrow B \) and if there exists an element \(m \in \mathbb{N}^* \) such that the restriction of \(\lambda \) to \(mA \) is an isomorphism from \(mA \) to \(mB \), then there exists \(\tilde{\alpha} \in \text{Aut}(B) \) such that the following diagram:

\[
\begin{array}{ccc}
A & \xrightarrow{\lambda} & B \\
\alpha \downarrow & & \downarrow \tilde{\alpha} \\
A & \xrightarrow{\lambda} & B
\end{array}
\]

is commutative.

In 1987, P. Schupp showed that the extension property in the category of groups characterizes the inner automorphisms, see [11]. Later M. R. Pettet gives a simpler proof of Schupp's result and showed that the inner automorphisms of a group are also characterized by the lifting property in the category of groups, see [8]. In [3] L. Ben Yakoub shows that the result of Schupp is not valid in general for Algebras over a commutative ring. It is not yet known whether this result is true for algebras (of finite dimensions) over a field. The automorphisms of abelian groups having the extension property in the category of abelian groups are characterized in [12] and the automorphisms of abelian groups having the weakly extension property in the category of abelian groups are characterized in [10].

Date: Accepted: Oct 24, 2016.
* Corresponding author.

2010 Mathematics Subject Classification. 20K30, 20K40, 20K27.

Key words and phrases. Abelian Group, divisible group, \(p \)-pur subgroup, \(p \)-basic subgroup.
2. Counterexample

Let A be an abelian group and $X = \{x_i\}_{i \in I}$ a non-empty family of elements of A, and let p a prime integer. We consider S the direct sum of cyclic groups $<x_k>$ with $o(x_k) = p^{k^4}$ for all $k \geq 1$: $S = \bigoplus_{k \geq 1} <x_k>$.

Let G the direct product of the cyclic groups: $G = \prod_{n \geq 1} <x_n>$, we consider φ_k the canonical projection of G on $<x_k>$:

$$\varphi_k : \prod_{i \geq 1} <x_i> \rightarrow <x_k> \quad (\lambda_1 x_1; \lambda_2 x_2; ...) \mapsto \lambda_k x_k$$

Lemma 2.1.

Let m a positive integer, the element e_m in G is defined by:

$$\varphi_k(e_m) = \begin{cases} 0 & \text{if } k < m \\ p^{k^4-m^4} x_k & \text{if } k \geq m \end{cases}$$

1) $o(e_m) = p^{m^4}.$
2) $\forall m \geq 1 : e_m - p^{(m+1)^4-m^4} e_{m+1} = x_m$

Proof 2.2.

1) According to the definition of the element e_m, it is easy to see that: $o(e_m) = p^{m^4}$.

2) For the second point of the lemma, we proceed by disjunction cases:

First case: $k < m$.
In this case, $\varphi_k(e_m) = 0$ and since $k < m + 1$, then $\varphi_k(e_{m+1}) = 0$, so $\varphi_k(e_m - p^{(m+1)^4-m^4} e_{m+1}) = \varphi_k(e_m) - p^{(m+1)^4-m^4} \varphi_k(e_{m+1})$. Therefore, $\varphi_k(e_m - p^{(m+1)^4-m^4} e_{m+1}) = 0$.

Second case: $k = m$.
In this case, $\varphi_m(e_m) = x_m$ et $\varphi_m(e_{m+1}) = 0$.
Then $\varphi_m(e_m - p^{(m+1)^4-m^4} e_{m+1}) = \varphi_m(e_m) - p^{(m+1)^4-m^4} \varphi_m(e_{m+1})$.
Which is implies that: $\varphi_m(e_m - p^{(m+1)^4-m^4} e_{m+1}) = x_m$.

Third case: If $k > m$ then $k \geq m + 1$.
In this case, $\varphi_k(e_m) = p^{k^4-m^4} x_k$ et $\varphi_k(e_{m+1}) = p^{k^4-(m+1)^4} x_k$.
From where $\varphi_k(e_m - p^{(m+1)^4-m^4} e_{m+1}) = p^{k^4-m^4} x_k - p^{(m+1)^4-m^4} p^{k^4-(m+1)^4} x_k$.
Then $\varphi_m(e_m - p^{(m+1)^4-m^4} e_{m+1}) = p^{k^4-m^4} x_k - p^{k^4-m^4} x_k$.
Therefore, $\varphi_m(e_m - p^{(m+1)^4-m^4} e_{m+1}) = 0$.
Therefore we have: $\forall m \geq 1 : e_m - p^{(m+1)^4-m^4} e_{m+1} = x_m$.

Lemma 2.3.
Let $A = \bigoplus_{k \geq 1} < e_k >$.

If we pose for all $i \geq 1$: $t_i = e_i - p^{(i+1)^4-i^4} e_{i+1}$ and if we consider the homomorphism ψ_k of groups defined by:
$$\psi_k : A \to < e_k > \sum_{1 \leq i \leq n} \lambda_i e_i \mapsto \lambda_k e_k$$

Then: $< t_1, t_2, \ldots > = \bigoplus_{k \geq 1} < t_k >$

Proof 2.4.

It suffices to show that the family $(t_i)_{i \geq 1}$ is linearly independent.

We suppose that $\sum_{1 \leq i \leq n} \lambda_i t_i = 0$.

Let us $k_0 = \inf \{ k / \lambda_k t_k \neq 0 \}$, from where $\psi_{k_0}(\sum_{k_0 \leq i \leq n} \lambda_i e_i) = \lambda_{k_0} e_{k_0}$.

Then $\sum_{n_0 \leq i \leq n} \lambda_i(e_i - p^{(i+1)^4-i^4} e_{i+1}) = 0$.

Therefore $\psi_{k_0}(\sum_{n_0 \leq i \leq n} \lambda_i(e_i - p^{(i+1)^4-i^4} e_{i+1})) = 0$.

From where $\lambda_{k_0} e_{k_0} = 0$.

Which is implies: $p^{k_0^4} | \lambda_{k_0}$, therefore there is a relative integer μ such that: $\lambda_{k_0} = \mu p^{k_0^4}$.

Then $\lambda_{k_0} t_{k_0} = \mu p^{k_0^4}(e_{k_0} - p^{(k_0+1)^4-k_0^4} e_{k_0+1})$.

Which is equivalent to: $\lambda_{k_0} t_{k_0} = \mu(p^{k_0^4} e_{k_0} - p^{(k_0+1)^4} e_{k_0+1})$.

That is to say $\lambda_{k_0} t_{k_0} = 0$, which is absurd.

Therefore, $< t_1, t_2, \ldots > = \bigoplus_{k \geq 1} < t_k >$.

Theorem 2.5.

$\bigoplus_{i \geq 1} < t_i >$ is a p-basic subgroup of A.

Proof 2.6.

Let $B = A/\bigoplus_{i \geq 1} < t_i >$.

Hence $B = \langle e_1, e_2, \ldots \rangle$.

Then $B = \langle p^{3^4} e_2, p^{7^4} e_3, \ldots, p^{(n+1)^4} e_{n+1}, \ldots \rangle$.

which implies that B is p-divisible (because $B \subset pB \subset B$).

Furthermore the group $A = \bigoplus_{k \geq 1} < e_k >$ is a direct sum of cyclic groups.

We also have for all $i \geq 1$: $t_i = e_i - p^{(i+1)^4-i^4} e_{i+1}$.

From where $A = \bigoplus_{1 \leq i \leq n} < t_i > + \bigoplus_{i \geq n+1} < e_i >$.

which implies that $\bigoplus_{1 \leq i \leq n} < t_i >$ is a direct factor of A.

Then $\bigoplus_{1 \leq i \leq n} < t_i >$ is a p-pure subgroup of A.
Therefore $\bigoplus_{i \geq 1} < t_i >$ is also a p-pure subgroup of A.

Consequently $\bigoplus_{i \geq 1} < t_i >$ is a p-basic subgroup of A.

Proposition 2.7.

If we pose: $f_i = e_1 - p^{i-1} e_i$ for all $i \geq 2$. Then:

(i) $< f_2, f_3, ..., f_i, f_{i+1}, ... >$ is a subgroup of $< t_1, t_2, ..., t_i, ... >$;

(ii) If we consider the quotient group $A_1 = (A = \bigoplus_{k \geq 1} < e_k >) / < f_2, f_3, ..., f_i, f_{i+1}, ... >$,

then $\overline{e_1} \neq \overline{0}$.

Proof 2.8.

(i) It is easy to see that:

$\forall i \geq 2: < f_2, f_3, ..., f_i, f_{i+1}, ... > = < f_2, f_3 - f_2, ..., f_{i+1} - f_i, ... >$.

We also have for all $i \geq 2$: $f_{i+1} - f_i = p^{i-1} e_i - p^{i(i+1)} e_i - p^{i-1} e_{i+1}$.

Which means that $f_{i+1} - f_i = p^{i-1}(e_i - p^{i(i+1)-i} e_{i+1})$.

Or $f_{i+1} - f_i = p^{i-1}t_i$.

And since $f_2 = e_1 - p^{2-1} e_2 = t_1$.

So $< f_2, f_3, ..., f_i, f_{i+1}, ... > = < t_1, p^{2-1} t_2, ..., p^{i-1} t_i, ... >$ is a subgroup of $< t_1, t_2, ..., t_i, ... >$.

(ii) we Suppose that: $\overline{e_1} = \overline{0}$.

From where $e_1 \in < f_2, f_3, ..., f_i, f_{i+1}, ... > = < t_1, p^{2-1} t_2, ..., p^{i-1} t_i, ... >$.

Then $e_1 = \lambda t_1 + \sum_{2 \leq i \leq n_0} \lambda i p^{i-1} t_i$ with $\lambda p^{n_0 - 1} t_{n_0} \neq 0$.

According to the definition of ψ_k, we have: $\psi_{n_0 + 1}(e_1) = 0$.

Which is equivalent to $\psi_{n_0 + 1}(\lambda n_0 p^{n_0 - 1} t_{n_0}) = 0$.

Which means $\psi_{n_0 + 1}(\lambda n_0 p^{n_0 - 1} e_{n_0} - \lambda n_0 p^{(n_0 + 1) - 1} e_{n_0 + 1}) = 0$.

Which means $-\lambda n_0 p^{(n_0 + 1) - 1} e_{n_0 + 1} = 0$.

Then $p | \lambda_{n_0}$ which implies that there is an integer such that: $\lambda_{n_0} = p \lambda'_{n_0}$.

From where $\lambda n_0 p^{n_0 - 1} t_{n_0} = \lambda' n_0 p^{n_0 - 1} t_{n_0}$.

Which is equivalent to $\lambda n_0 p^{n_0 - 1} t_{n_0} = \lambda' n_0 p^{n_0 - 1} t_{n_0}$.

Which is absurd.

Let now $N \in \mathbb{N}^*$, then $\exists n \in \mathbb{N}^*$ such that: $n^4 - 1 > N$.

Since $f_n = e_1 - p^{n-1} e_n$, then:

$\forall N \in \mathbb{N}^*: \overline{c_1} = p^{n-1} e_n \in p^N A_1 \quad (n^4 - 1 = N + N' \Rightarrow p^{n^4 - 1} A_1 = p^N p^{N'} A_1)$.

Which implies that $\overline{c_1} \in \bigcap_{n \in \mathbb{N}^*} p^N A_1$.

And since $o(e_1) = p$, so $\overline{c_1} \in \bigcap_{n \in \mathbb{N}^*} n A_1 = A_1^1$.

On the other hand $\bigoplus_{i \geq 1} < t_i >$ is a p-basic subgroup of $A = \bigoplus_{i \geq 1} < e_i >$.

Then $\bigoplus_{i \geq 1} < t_i > / < f_2, f_3, ..., f_i, f_{i+1}, ... > = \bigoplus_{i \geq 1} < t_i > / < t_1 > \oplus \bigoplus_{i \geq 2} p^{i-1} < t_i >$

is a p-basic subgroup of $\bigoplus_{i \geq 1} < e_i > / < f_2, f_3, ..., f_i, f_{i+1}, ... > = A_1$.

So by theorem 32.4 ([4], p:138) $A_1 = < \overline{t_1} > \oplus (\bigoplus_{i \geq 2} < \overline{t_i} > + p A_1)$.

Finally, we consider the automorphism of A_1 defined by:
CONSTRUCTION OF AN AUTOMORPHISM OF AN ABELIAN GROUP THAT SATISFIES THE PROPERTY OF THE WEAK EXTENSION WITHOUT SATISFYING THE PROPERTY OF THE EXTENSION

\[\varphi : < t_1 > \oplus (\bigoplus \mathclap{\substack{i \geq 2 \\implies t_i > + p A_1}}) \rightarrow A_1 \]
\[\lambda_1 t_1 + \sum_{2 \leq i \leq n} \lambda_i t_i + p \overline{a} \rightarrow \lambda_1 t_1 + \sum_{2 \leq i \leq n} \lambda_i t_i + p \overline{a} + \lambda_1 \overline{e_1} \]

It’s clear that \(\varphi = id_{A_1} + \rho \) with \(\rho \) an homomorphism of \(A_1 \) into \(A_1^1 \) defined by:
\[\rho : < t_1 > \oplus (\bigoplus \mathclap{\substack{i \geq 2 \\implies t_i > + p A_1}}) \rightarrow A_1^1 \]
\[\lambda_1 t_1 + \sum_{2 \leq i \leq n} \lambda_i t_i + p \overline{a} \rightarrow \lambda_1 \overline{e_1} \]

By theorem 1.1 [10], the automorphism \(\varphi \) satisfy the property of the weak extension. By against the automorphism \(\varphi \) does not satisfy the property of the extension because the only automorphisms satisfying the property of extension in the category of abelian groups reduced are: \(\pm id \), see [12].

3. CONCLUSION

In this work, we will give an example against constructing an automorphism of an abelian group which has the property of low extension without posseder the property of the extension.

4. ACKNOWLEDGMENT

The authors would like to thank Sidi Mohamed Ben Abdellah Univercity (USMBA), LSI and FP of Taza in MOROCCO for its valued support.

REFERENCES

1. I. Kaplansky; Infinite abelian groups, the University of Michigan Press, Ann Arbor (1954).
1Department of Mathematics, CRMEF BP.49, Fez, Morocco.
E-mail address: zeriouhmostafa@gmail.com

2Department of Mathematical and Computer Sciences, Labo TAGMAD, Faculty of Sciences Ain Choc, University of Hassan II Casablanca, Morocco.
E-mail address: seddikabd@hotmail.com

3Department of Mathematics and Computer Faculty of Sciences, University Mohammed First BP.717 60000, Oujda, Morocco.
E-mail address: ziane12001@yahoo.fr