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HOMOMORPHISM OF CUTS OF MULTIGROUPS

P.A. EJEGWA1∗ AND A.M. IBRAHIM2

Abstract. The notion of multigroups via multisets is of interest in non-
classical groups. In this paper, we propose the notion of homomorphism of
cuts of multigroups and obtain some related results. Some homomorphic prop-
erties of upper cut of multigroups are also discussed.

1. Introduction

In crisp set theory, repetition of elements is not allowed in a collection. The
theory of groups was developed from this point of view as the algebraic structure
of sets. Matching the notion of set with real-life situations, repetition of objects
cannot be ignored. Sequel to this, the term multiset was first suggested by N.G.
De Bruijn to Knuth as the generalization of crisp set theory (that is, in a multiset,
elements are allowed to repeat)[14]. With this, one can conveniently say that,
every set is a multiset but the reverse is not true [6]. Elaborate work on multiset
and its applications can be found in [7, 24, 25, 26].

Since multiset is the generalization of set, it is then natural to generalize group
as multigroup. The idea of multigroups was proposed in [17] as an algebraic
structure of multisets that generalized groups. The notion is consistent with
other non-classical groups in [1, 5, 16, 18, 20, 22, 23], etc.

Although other researchers in [4, 8, 15, 19, 21] earlier used the term multigroup
as an extension of group theory (with each of them having a divergent view),
the notion of multigroup via multiset in [17] is quite acceptable because it is
in consonant with the aforementioned non-classical groups. Further studies on
multigroups via multisets can be found in [2, 3, 13].

In [9], the algebraic perspective of n-level sets of multisets discussed in [12,
17] was proposed and called, cuts of multigroups. This paper introduce the
notion of homomorphism of cuts of multigroups and deduce some results. Some
homomorphic properties of upper cut of multigroups are also discussed.

2. preliminaries

In this section, we review some definitions and results for the sake of completeness
and reference.
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Definition 2.1 ([24]). Let X = {x1, x2, ..., xn, ...} be a set. A multiset A over
X is a cardinal-valued function, that is, CA : X → N such that for x ∈ Dom(A)
implies A(x) is a cardinal and A(x) = CA(x) > 0, where CA(x) denoted the
number of times an object x occur in A, that is, a counting function of A (where
CA(x) = 0, implies x /∈ Dom(A)). The set X is called the ground or generic set
of the class of all multisets (for short, msets) containing objects from X.

We denote the set of all multisets by MS(X).

Definition 2.2 ([25]). Let A and B be two multisets over X, then A is called
a submultiset of B written as A ⊆ B if CA(x) ≤ CB(x)∀x ∈ X. Also, if A ⊆ B
and A 6= B, then A is called a proper submultiset of B and denoted as A ⊂ B.
A multiset is called the parent in relation to its submultiset.

Definition 2.3 ([11]). Let {Ai}i∈I be a family of multisets over X. Then

(i) C⋂
i∈I Ai

(x) =
∧

i∈I CAi
(x)∀x ∈ X.

(ii) C⋃
i∈I Ai

(x) =
∨

i∈I CAi
(x)∀x ∈ X.

Definition 2.4 ([26]). Let A,B ∈ MS(X). Then A and B are comparable to
each other if A ⊆ B or B ⊆ A.

Definition 2.5 ([17]). Let X be a group. A multiset G over X is called a
multigroup of X if the count function of G, that is, CG : X → N satisfies the
following conditions:

(i) CG(xy) ≥ CG(x) ∧ CG(y)∀x, y ∈ X,
(ii) CG(x−1) = CG(x)∀x ∈ X.

By implication, a multiset G over X is called a multigroup of a group X if

CG(xy−1) ≥ CG(x) ∧ CG(y),∀x, y ∈ X.

It follows immediately from the definition that,

CG(e) ≥ CG(x)∀x ∈ X,

where e is the identity element of X. We denote the set of all multigroups of X
by MG(X).

Definition 2.6 ([9]). Let {Ai}i∈I , I = 1, ..., n be an arbitrary family of multi-
groups of X. Then {Ai}i∈I is said to have inf/sup assuming chain if either
A1 ⊆ A2 ⊆ ... ⊆ An or A1 ⊇ A2 ⊇ ... ⊇ An, respectively.

Remark 2.7 ([9]). Every multigroup is a multiset but the converse is not neces-
sarily true.

Definition 2.8 ([9]). Let A ∈MG(X). Then the sets A[n] and A(n) defined by

A[n] = {x ∈ X | CA(x) ≥ n, n ∈ N}
and

A(n) = {x ∈ X | CA(x) > n, n ∈ N}
are called strong and weak upper cuts of A respectively.
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Definition 2.9 ([9]). Let A ∈MG(X). Then the sets A[n] and A(n) defined by

A[n] = {x ∈ X | CA(x) ≤ n, n ∈ N}
and

A(n) = {x ∈ X | CA(x) < n, n ∈ N}
are called strong and weak lower cuts of A respectively.

Remark 2.10 ([9]). We observe that A[n] = B[n], A(n) = B(n), A
[n] = B[n], and

A(n) = B(n) iff A = B. Also, A(n) ⊆ A[n] and A(n) ⊆ A[n].

Theorem 2.11 ([9]). Let A,B ∈ MG(X). For all n ∈ N, if A ⊆ B, then
A[n] ⊆ B[n] and A[n] ⊆ B[n].

Theorem 2.12 ([9]). Let A ∈ MG(X). For all n1, n2 ∈ N and n1 ≤ n2, then
A(n2) ⊆ A[n2] ⊆ A(n1) and A(n1) ⊆ A(n2) ⊆ A[n2].

Theorem 2.13 ([9]). Let A ∈ MG(X). Then A[n], n ∈ N is a subgroup of X

for n ≤ CA(e) and A[n], n ∈ N is a subgroup of X for n ≥ CA(e), where e is the
identity element of X.

Definition 2.14 ([10]). Let X and Y be groups and let f : X → Y be a
homomorphism. If A and B be multigroups of X and Y , respectively. Then

(i) the image of A under f , denoted by f(A), is a multigroup of Y defined by

Cf(A)(y) =

{ ∨
x∈f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ Y .
(ii) the inverse image of B under f , denoted by f−1(B), is a multigroup of X

defined by
Cf−1(B)(x) = CB(f(x))∀x ∈ X.

Theorem 2.15 ([10]). Let f be a homomorphic mapping from a group X onto a
group Y .

(i) For A,B ∈MG(X), if A ⊆ B, then f(A) ⊆ f(B).
(ii) For A,B ∈MG(Y ), if A ⊆ B, then f−1(A) ⊆ f−1(B).

Proposition 2.16 ([17]). Let X, Y be two groups and f : X → Y be a homo-
morphism. If A ∈ MG(X) and B ∈ MG(Y ), respectively, then f(A) ∈ MG(Y )
and f−1(B) ∈MG(X).

3. Homomorphism of upper and lower cuts of multigroups

Definition 3.1. Let X, Y be groups, A ∈MG(X), B ∈MG(Y ) and f : X → Y
be a homomorphic mapping. Then for any n ∈ N, if f is a homomorphic mapping
from A[n] to B[n], f is called upper cut homomorphic mapping from A to B.

Definition 3.2. Let X, Y be groups, A ∈MG(X), B ∈MG(Y ) and f : X → Y
be a homomorphic mapping. Then for at least one n ∈ N, if f is a homomorphic
mapping from A[n] to B[n], f is called lower cut homomorphic mapping from A
to B.
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Example 3.3. Let X = {0, 1, 2, 3} be a group of Z4,+ and Y = {0, 2, 4, 6} ⊆
Z8,+. Then ∃ a homomorphism f : X → Y defined by f(x) = 2x ∀x ∈ X.
Suppose that A and B are multigroups of X and Y , respectively, given as

A = [04, 13, 22, 33] and

B = [04, 23, 42, 63].

Then
f(A) = [04, 23, 42, 63] and

f−1(B) = [04, 13, 22, 33]

satisfying

Cf(A)(y) = CA(f−1(y)) and Cf−1(B)(x) = CB(f(x)) ∀x ∈ X and ∀y ∈ Y.

For n = 1, 2, 3, 4, we get

A[1] = A[2] = {0, 1, 2, 3}, A[3] = {0, 1, 3}, A[4] = {0}
and

B[1] = B[2] = {0, 2, 4, 6}, B[3] = {0, 2, 6}, B[4] = {0}.
Since ∃ a homomorphism f from A[n] to B[n] defined by f(x) = 2x ∀x ∈ X for
n = 1, 2, 3, 4, so f is an upper cut homomorphic mapping from A to B.

Similarly,

A[1] = {}, A[2] = {2}, A[3] = {1, 2, 3}, A[4] = {0, 1, 2, 3}
and

B[1] = {}, A[2] = {4}, A[3] = {2, 4, 6}, A[4] = {0, 2, 4, 6}.
So ∃ f : A[n] → B[n] for only n = 4 defined by f(x) = 2x ∀x ∈ X. Consequently,
f is a lower cut homomorphism from A to B.

Proposition 3.4. Let f : X → Y be a homomorphism, A ∈ MG(X) and B ∈
MG(Y ), respectively. For any n ∈ N, we have

(i) f(A[n]) ⊆ (f(A))[n],
(ii) f−1(B[n]) = (f−1(B))[n],
(iii) f(A(n)) ⊆ f(A[n]) ⊆ (f(A))[n],
(iv) f−1(B(n)) ⊆ f−1(B[n]) = (f−1(B))[n].

Proof. (i) Let y ∈ f(A[n]), then ∃ x ∈ A[n] such that f(x) = y and

CA(x) ≥ n, n ∈ N.
Consequently, we get

CA(f−1(y)) ≥ n, n ∈ N implies Cf(A)(y) ≥ n, n ∈ N
and so, y ∈ (f(A))[n]. Hence, f(A[n]) ⊆ (f(A))[n].

(ii) For every x, x ∈ f−1(B[n]) ⇔ f(x) ∈ B[n] ⇔ CB(f(x)) ≥ n, n ∈ N. By
Definition 2.8 and Definition 2.14, we see that

Cf−1(B)(x) = CB(f(x)) ≥ n, n ∈ N,
that is, x ∈ (f−1(B))[n]. Hence, f−1(B[n]) = (f−1(B))[n].
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(iii) Since A(n) ⊆ A[n] by Remark 2.10, then f(A(n)) ⊆ f(A[n]) by Theorem
2.15. Hence, the result follows from (i).

(iv) Also, B(n) ⊆ B[n] and so, f−1(A(n)) ⊆ f−1(A[n]) by the same reasons as
in (iii). The proof is completed by (ii). �

Corollary 3.5. Let f : X → Y be a homomorphism. Suppose A ∈ MG(X) and
B ∈MG(Y ), respectively, then for at least one n ∈ N,

(i) f(A[n]) ⊆ (f(A))[n],
(ii) f−1(B[n]) = (f−1(B))[n],
(iii) f(A(n)) ⊆ f(A[n]) ⊆ (f(A))[n],
(iv) f−1(B(n)) ⊆ f−1(B[n]) = (f−1(B))[n].

Proof. Similar to Proposition 3.4. �

Theorem 3.6. Let X, Y be groups, A ∈MG(X), B ∈MG(Y ) and f : X → Y ,
respectively. Then (f(A))[n] = f(A[n]) for any n ∈ N if and only if for each y ∈ Y
there exists x0 ∈ f−1(y) such that Cf(A)(y) = CA(x0).

Proof. Suppose (f(A))[n] = f(A[n]). For arbitrary y ∈ Y , let Cf(A)(y) = n, then
y ∈ (f(A))[n] = f(A[n]). It follows that there exist x0 ∈ A[n] such that
y = f(x0). Hence, we have x0 ∈ f−1(y) which satisfies CA(x0) ≥ n. Consequently,
we have

CA(x0) ≥ Cf(A)(y) =
∨

x∈f−1(y)

CA(x) ≥ CA(x0).

Therefore, Cf(A)(y) = CA(x0).
Conversely, for each y ∈ Y ∃ x0 ∈ f−1(y) such that Cf(A)(y) = CA(x0). For

n ∈ N, let y ∈ (f(A))[n]. We show that y ∈ f(A[n]). Since

CA(x0) = Cf(A)(y) =
∨

x∈f−1(y)

CA(x) ≥ n,

we have f(x0) = y and so x0 ∈ A[n] implies y ∈ f(A[n]). Hence, (f(A))[n] =
f(A[n]). �

Corollary 3.7. Let f : X → Y be a homomorphic mapping, A ∈ MG(X) and
B ∈MG(Y ), respectively. Then (f(A))[n] = f(A[n]) for at least one n ∈ N if and
only if for each y ∈ Y there exists x0 ∈ f−1(y) such that Cf(A)(y) = CA(x0).

Proof. Similar to Theorem 3.6. �

Definition 3.8. Let X, Y be groups, f : X → Y and A ∈ MG(X). Then for
every y ∈ Y , if there exists x0 ∈ f−1(y) such that Cf(A)(y) = CA(x0), then f is
said to be quasi-surjective.

Lemma 3.9. Let X, Y be groups, f : X → Y and A ∈ MG(X). Then for at
least one n ∈ N, we have (f(A))[n] = f(A[n]) or (f(A))[n] = f(A[n]) if and only if
f is quasi-surjective.

Proof. Combining Theorem 3.6, Corollary 3.7 and Definition 3.8, the result fol-
lows. �
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Theorem 3.10. Let X, Y be groups, A ∈MG(X), B ∈MG(Y ) and f : X → Y
be quasi-surjective. Then f is an upper cut homomorphic mapping from A to B
if and only if f is a homomorphic mapping from X to Y , and (f(A))[n] ⊆ B[n]

for any n ∈ N.

Proof. Suppose f is an upper cut homomorphic mapping from A to B. Then for
every n ∈ N, we can infer that f is a homomorphic mapping from A[n] to B[n].
Actually, X = A[1], Y = B[1], thus f is an homomorphic mapping from X to Y .
As f is quasi-surjective, then in light of Lemma 3.9, we get

(f(A))[n] = f(A[n]) ⊆ B[n].

Conversely, suppose f is a homomorphic mapping from X to Y and
(f(A))[n] ⊆ B[n] for n ∈ N. Then for all n ∈ N, because f is quasi-surjective, for
any x ∈ A[n] ⊆ X, we have

f(x) ∈ f(A[n]) = (f(A))[n] ⊆ B[n].

Therefore, f is a homomorphism from A[n] to B[n]. Since f is a homomorphic
mapping from X to Y , then

f(xy) = f(x)f(y) holds for arbitrary x, y ∈ A[n] ⊆ X,

where f(x), f(y) ∈ B[n]. According to Theorem 2.13, this indicates that B[n] is a
subgroup of Y . Hence, f(x)f(y) ∈ B[n], that is to say, f preserves the operation.
Synthesizing this discussion, f is a homomorphic mapping from A[n] to B[n].
Hence, by Definition 3.1, we obtain that f is an upper cut homomorphic mapping
from A to B. �

Corollary 3.11. Let X, Y be groups such that f : X → Y is quasi-surjective,
A ∈MG(X) and B ∈MG(Y ), respectively. Then f is a lower cut homomorphic
mapping from A to B if and only if f is a homomorphic mapping from X to Y ,
and (f(A))[n] ⊆ B[n] for at least one n ∈ N.

Proof. Similar to Theorem 3.10. �

Definition 3.12. Let X and Y be groups, f : X → Y , A ∈ MG(X) and
B ∈ MG(Y ), respectively. For any n ∈ N, if f is a surjective homomorphic
mapping from A[n] to B[n], then f is called a surjective upper cut homomorphic
mapping from A to B. Moreover, A and B are upper cuts homomorphic with
respect to f .

Theorem 3.13. Let X and Y be groups, A and B be multigroups of X and Y ,
respectively, and f : X → Y with f quasi-surjective. Then f is a surjective
upper cut homomorphic mapping from A to B if and only if f is a surjective
homomophic mapping from X to Y with f(A[n]) = B[n] for any n ∈ N.

Proof. Suppose f is a surjective upper cut homomorphic mapping from A to
B. Then by Definition 3.12, for any n ∈ N it follows that f is a surjective
homomorphic mapping from A[n] to B[n]. Observe that, X = A[1] and Y = B[1],
evidently, f is a surjective homomorphic mapping from X to Y . Clearly, we have
f(A[n]) ⊆ B[n]. Similarly, B[n] ⊆ f(A[n]) is obvious. Hence, f(A[n]) = B[n].
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Conversely, for any n ∈ N and y ∈ B[n], then f(A[n]) = B[n] implies that
∃ x ∈ A[n] such that f(x) = y, that is, f is a surjection from A[n] to B[n]. To
prove that f preserves the operation follows from the converse proof of Theorem
3.10, so we omit it. Hence, for any n ∈ N, it follows that f is a surjective upper
cut homomorphic mapping from A to B. �

Definition 3.14. Let X and Y be groups, f : X → Y , A ∈ MG(X) and B ∈
MG(Y ), respectively. For at least one n ∈ N, if f is a surjective homomorphic
mapping from A[n] to B[n], then f is called a surjective lower cut homomorphic
mapping from A to B. Moreover, A and B are lower cuts homomorphic with
respect to f .

Corollary 3.15. Let X and Y be groups, A and B be multigroups of X and
Y , respectively, and f : X → Y with f quasi-surjective. Then f is a surjective
lower cut homomorphic mapping from A to B if and only if f is a surjective
homomophic mapping from X to Y with f(A[n]) = B[n] for at least one n ∈ N.

Proof. Similar to Theorem 3.13. �

Definition 3.16. Let X and Y be groups, A ∈ MG(X), B ∈ MG(Y ) and
f : X → Y . Then for any n ∈ N, if f is an isomorphic mapping from A[n] to B[n],
then f is called an upper cut isomorphic mapping from A to B. In particular, A
and B are said to be upper cuts isomorphic with respect to f .

Theorem 3.17. Let X and Y be groups, A ∈MG(X), B ∈MG(Y ) and
f : X → Y with f quasi-surjective. Then f is an upper cut isomorphic mapping
from A to B if and only if f is an isomorphic mapping from X to Y with f(A[n]) =
B[n] for any n ∈ N.

Proof. The Proof follows by combining Theorem 3.10 and Theorem 3.13. �

Definition 3.18. Let f : X → Y be homomorphism, A ∈ MG(X) and B ∈
MG(Y ), respectively. Then for at least one n ∈ N, if f is an isomorphic mapping
from A[n] to B[n], then f is called a lower cut isomorphic mapping from A to B.
In particular, A and B are said to be lower cuts isomorphic with respect to f .

Corollary 3.19. Let f : X → Y be homomorphism with f quasi-surjective,
A ∈ MG(X) and B ∈ MG(Y ), respectively. Then f is a lower cut isomorphic
mapping from A to B if and only if f is an isomorphic mapping from X to Y
with f(A[n]) = B[n] for at least one n ∈ N.

Proof. The Proof follows by combining Corollary 3.11 and Corollary 3.15. �

Theorem 3.20. Let f : X → Y be an isomorphism, A ∈ MG(X) and B ∈
MG(Y ). Then f(A[n]) ∈ Y and f−1(B[n]) ∈ X for all n ≤ (CA(e), CB(e′)), where
e, e′ are the identities of X and Y , respectively.

Proof. By Theorem 2.13, it is clear that A[n] is a subgroup of X. We show
that f(A[n]) is a subgroup of Y . Let y1, y2 ∈ f(A[n]) be any two elements, then
Cf(A)(y1) ≥ n and Cf(A)(y2) ≥ n. By Proposition 3.4, f(A[n]) ⊆ (f(A))[n], n ∈ N.
So, ∃ x1, x2 ∈ X such that

CA(x1) = Cf(A)(y1) ≥ n and CA(x2) = Cf(A)(y2) ≥ n
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imply

CA(x1) ≥ n and CA(x2) ≥ n.

Then,

CA(x1) ∧ CA(x2) ≥ n.

Again, CA(x1x
−1
2 ) ≥ CA(x1) ∧ CA(x2) ≥ n ⇒ CA(x1x2) ≥ n. Hence, x1x

−1
2 ∈

A[n]

⇔ f(x1x
−1
2 ) ∈ f(A[n]) ⊆ (f(A))[n]

⇔ f(x1)f(x−12 ) ∈ (f(A))[n] = f(x1)(f(x2))
−1 ∈ (f(A))[n]

⇔ y1y
−1
2 ∈ (f(A))[n]. Therefore, f(A[n]) ∈ Y .

The proof of f−1(B[n]) ∈ X is similar. �

Corollary 3.21. Let f : X → Y be an isomorphism, A ∈ MG(X) and B ∈
MG(Y ). Then f(A[n]) is a subgroup of Y and f−1(B[n]) is a subgroup of X for
all n ≥ (CA(e), CB(e′)), where e, e′ are the identities of X and Y , respectively.

Proof. Similar to Theorem 3.20. �

Corollary 3.22. If f : X → Y be homomorphism of group X onto group Y and
{Ai}i∈I be family of multigroups of X. Then for all n ≤ (CAi

(e), CBi
(e′)), where

e, e′ are the identities of X and Y , respectively,

(i) f(
⋂

i∈I Ai[n]) is a subgroup of Y .
(ii) f−1(

⋂
i∈I Bi[n]) is a subgroup of X.

(iii) f(
⋃

i∈I Ai[n]) is a subgroup of Y provided {Ai}i∈I have sup/inf assuming
chain.

(iv) f−1(
⋃

i∈I Bi[n]) is a subgroup of X provided {Bi}i∈I have sup/inf assuming
chain.

Proof. Similar to Theorem 3.20. �

Corollary 3.23. If f : X → Y be homomorphism of group X onto group Y and
{Ai}i∈I be family of multigroups of X. Then for all n ≥ (CAi

(e), CBi
(e′)), where

e, e′ are the identities of X and Y , respectively,

(i) f(
⋂

i∈I A
[n]
i ) is a subgroup of Y .

(ii) f−1(
⋂

i∈I B
[n]
i ) is a subgroup of X.

(iii) f(
⋃

i∈I A
[n]
i ) is a subgroup of Y provided {Ai}i∈I have sup/inf assuming

chain.
(iv) f−1(

⋃
i∈I B

[n]
i ) is a subgroup of X provided {Bi}i∈I have sup/inf assuming

chain.

Proof. Similar to Theorem 3.20. �

4. Upper cut homomorphic properties of multigroups

This section focuses on upper cut homomorphic properties of multigroups. We
define a pre-surjective mapping f , introduce analogous concept of nested set and
obtain some results.
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Definition 4.1. Let X, Y be sets, f : X → Y be a mapping and A ∈ MS(X),
respectively. If for every n1, n2 ∈ N with n1 < n2 we have (f(A))[n2] ⊆ f(A[n1]),
then f is called pre-surjective, or it is said that f posses the pre-surjective prop-
erty.

Theorem 4.2. Let f : X → Y be a mapping, A ∈ MS(X) and n1, n2 ∈ N
satisfies n1 < n2. Then f is pre-surjective if and only if for every y ∈ (f(A))[n2]

there exists x ∈ A[n1] such that f(x) = y.

Proof. By hypothesis and Definition 4.1, it follows that f is pre-surjective ⇔
(f(A))[n2] ⊆ f(A[n1]) ⇔ y ∈ (f(A))[n2] ⇒ y ∈ f(A[n1]) ⇔ ∃ x ∈ A[n1] such that
f(x) = y. �

Definition 4.3. Let h : N → P (X), n 7→ h(n) ∈ P (X) be a mapping, T be
an index set. Then the mapping h is called a nested set on X, if the following
conditions are satisfied.

(i) n1 < n2 ⇒ h(n2) ⊆ h(n1),
(ii)

⋂
t∈T h(nt) ⊆

⋂
{h(n) | n <

∨
t∈T nt}.

We depicts the sets that posses such conditions on X by N(X).

Theorem 4.4. Let f : X → Y be a mapping, A ∈MS(X) and for all n ∈ N, let
h(n) = f(A[n]). Then h ∈ N(Y ) if and only if f is pre-surjective.

Proof. Suppose h ∈ N(Y ). In order to prove hat f is pre-surjective, we only need
to show that (f(A))[n2] ⊆ f(A[n1]), where n1, n2 ∈ N and n1 < n2. In fact, for
any y ∈ (f(A))[n2], we get

Cf(A)(y) =
∨

x∈f−1(y)

CA(x) ≥ n2.

Putting T = {t ∈ T | f(t) = y} and CA(t) = nt, we have∨
t∈T

nt = Cf(A)(y) ≥ n2.

For t ∈ T , we have t ∈ A[n] with y = f(t), thus y ∈ f(A[nt]).
Since the mapping h is an analogous of nested set on Y , by Definition 4.3, it is
straightforward to get

y ∈
⋂
t∈T

f(A[nt]) ⊆ {f(A[n]) |
∨
t∈T

nt > n}.

Considering n1 < n2 6
∨

t∈T nt, we infer that y ∈ f(A[n1]), which implies
(f(A))[n2] ⊆ f(A[n1]). In the light of Definition 4.1, f has pre-surjective property.

Conversely, suppose f is pre-surjective. On the one hand, whenever n1 < n2,
by using Theorem 2.11, Theorem 2.12 and Theorem 2.15, f(A[n2]) ⊆ f(A[n1]) is
clear.
On the other hand, for any y ∈

⋂
t∈T f(A[nt]) ∃ xt ∈ A[nt] such that f(xt) = y.

Consequently, for arbitrary t ∈ T , we get

Cf(A)(y) ≥
∨
t∈T

CA(xt) ≥
∨
t∈T

nt.
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Therefore, y ∈ (f(A))[∨t∈T nt].
As f is pre-surjective, for n <

∨
t∈T nt, by Theorem 4.2, we deduce that there

exists x ∈ A[n] such that f(x) = y. This implies that y ∈ f(A[n]), thus

y ∈
⋂
{f(A[n]) | n <

∨
t∈T

nt}.

Hence, ⋂
t∈T

f(A[n]) ⊆
⋂
{f(A[n]) | n <

∨
t∈T

nt}.

By Definition 4.3, h ∈ N(Y ). �

Corollary 4.5. Let f : X → Y be a mapping and A ∈MS(X). For every n ∈ N,
we define h(n) = f(A[n]), then h ∈ N(X) if and only if (f(A))[n] ⊆ f(A[n]).

Proof. Take any n1, n2 ∈ N with n1 < n2. By Theorem 2.11, Theorem 2.12 and
Theorem 2.15, we obtain

f(A[n2]) ⊆ f(A[n1]).

Combined with

(f(A))[n2] ⊆ f(A[n2]),

we get

(f(A))[n2] ⊆ f(A[n1]),

that is, f is pre-surjective. By Theorem 4.4, it follows that h ∈ N(X).
Conversely, suppose h ∈ N(X). The proof follows by adopting a similar method

to the proof of the necessity part of Theorem 4.4. �

Corollary 4.6. Let f : X → Y be a quasi-surjective mapping, A ∈ MS(X) and
h(n) = f(A[n]) for any n ∈ N. Then h ∈ N(X).

Proof. Combining Lemma 3.9 and Corollary 4.5, the result follows. �

Theorem 4.7. Let X be a set and A ∈MS(X). Then for arbitrary nt ∈ N,
t ∈ T , ⋂

t∈T

A[nt] = A[
∨

t∈T nt].

Proof. For any x ∈
⋂

t∈T A[nt], we have x ∈ A[nt]∀t ∈ T , then we get
CA(x) ≥ nt. Consequently,

CA(x) =
∨
t∈T

CA(x) ≥
∨
t∈T

nt.

Hence, x ∈ A[
∨

t∈T nt], that is, ⋂
t∈T

A[nt] ⊆ A[
∨

t∈T nt].

Again, for all x ∈ A[
∨

t∈T nt] and t ∈ T , we get

CA(x) ≥
∨
t∈T

nt ≥ nt.
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This implies that CA(x) ≥ nt, that is, x ∈
⋂

t∈T A[nt]. Hence,

A[
∨

t∈T nt] ⊆
⋂
t∈T

A[nt].

Therefore,
⋂

t∈T A[nt] = A[
∨

t∈T nt]. �

Theorem 4.8. Let X and Y be groups, f : X → Y be a homomorphism, where
f is quasi-surjective, A ∈ MG(X) and B ∈ MG(Y ). If f is an upper cut
homomorphic mapping from A to B with the pre-surjective property, then f(A) ∈
MG(Y ), and f is also an upper cut homomorphic mapping from A to f(A).

Proof. As f is pre-surjective, it follows that h ∈ N(Y ), where h(n) = f(A[n]) for
every n ∈ N. Since f is quasi-surjective, by Lemma 3.9, for arbitrary n ∈ N , we
have (f(A))[n] = f(A[n]). So, f(A) ∈MG(Y ). In addition, for A ∈MG(X), it is
clear that A[n] is a subgroup of X by Theorem 2.13. Consequently, f(A[n]) is a
subgroup of Y . Since

(f(A))[n] = f(A[n])⇒ (f(A))[n]

is a subgroup of Y . Hence, f(A) ∈MG(Y ).
Again, since f is an upper cut homomorphic mapping from A and B, we see

that f is a homomorphism from A[n] to B[n]. Then for every x, y ∈ A[n], it is clear
that f(x), f(y) ∈ f(A[n]). By Theorem 3.6 and Theorem 3.10,

f(A[n]) = (f(A))[n] ⊆ B[n].

Since f is a homomorphism from X to Y , f(xy) = f(x)f(y) and (f(A))[n] is a
subgroup of Y , we have f(x)f(y) ∈ (f(A))[n], that is, f preserves the operation.
Consequently, f is an upper cut homomorphism from A to f(A). �

Corollary 4.9. Let X and Y be groups, f : X → Y be a homomorphism,
where f is quasi-surjective, A ∈ MG(X) and B ∈ MG(Y ). If f is an upper
cut homomorphic mapping from A to B with the pre-surjective property, then
f−1(B) ∈MG(X), and f is also a surjective homomorphism from f−1(B) to B.

Proof. For any n ∈ N, setting h(n) = f−1(B[n]), we show that h ∈ N(X). Given
n1, n2 ∈ N with n1 < n2, by Theorem 2.12 and Theorem 2.15, we get

f−1(B[n2]) ⊆ f−1(B[n1]).

By Proposition 3.4 and the properties of B[n], we get⋂
t∈T

f−1(B[nt]) =
⋂
t∈T

(f−1(B))[nt].

By Theorem 4.7, it follows that⋂
t∈T

(f−1(B))[nt] = (f−1(B))[∨t∈T nt].

Since

(f−1(B))[∨t∈T nt] = f−1(B[
∨

t∈T nt]),
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it is obvious that ⋂
t∈T

f−1(B[nt]) ⊆ {f−1(B[n]) | n <
∨
t∈T

nt}.

Hence, h ∈ N(X). Since (f−1(B))[n] 6= ∅, for every n ∈ N, then for any x, y ∈
(f−1(B))[n] = f−1(B[n]), there exists x0, y0 ∈ B[n] such that f(x) = x0 and
f(y) = y0. As f is upper cut homomorphism from A to B, and B[n] is a subgroup
of Y , we infer immediately that

f(xy−1) = f(x)(f(y))−1 = x0y
−1
0 ∈ B[n].

This implies that
xy−1 ∈ f−1(B[n]) = (f−1(B))[n],

and so, (f−1(B))[n] is a subgroup of X. Hence, f−1(B) ∈ MG(X). Since f
is a surjective upper cut homomophic mapping from A to B, from Definition
3.12, we know that f is a surjective homomorphism from A[n] to B[n]. For all
x, y ∈ (f−1(B))[n], we notice that B ∈MG(Y ), f(xy) = f(x)f(y) ∈ B[n]. Hence,
f is a surjective upper cut homomorphism from f−1(B) to B. �

Remark 4.10. Let f : X → Y be homomorphism of groups where f is quasi-
surjective, A ∈ MG(X) and B ∈ MG(Y ). If f is an upper cut isomorphic
mapping from A to B with the pre-surjective property, then

(i) f(A) ∈ MG(Y ), and f is also upper cut isomorphic mapping from A to
f(A),

(ii) f−1(B) ∈ MG(X), and f is also upper cut isomorphic mapping from
f−1(B) to B.

This remark is a direct consequence of Theorem 4.8 and Corollary 4.9.

5. Conclusion

We have proposed the notion of homomorphism of cuts of multigroups, explicated
its properties and obtained some related results. Some homomorphic properties
of upper cut of multigroups were explored.

Acknowledgement. We would like to express our profound gratitude to the
reviewers. Their insights and contributions improve the quality of the paper.
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