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A NOTE ON MULTIPLIERS AND COMMUTATIVITY OF
PRIME RINGS

KYUNG HO KIM

Abstract. In this paper, we investigate the commutativity of prime rings
admitting multipliers of R satisfying certain identities and some related results
have also been discussed.

1. Introduction and Preliminaries

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x)
holds for all x, y ∈ R. Over the last few decares, several authors have inves-
tigated the relationship between the commutativity of the ring R and certain
specific types of derivations of R. The first result in this direction is due to E. C.
Posner [9] who proved that if a ring R admits a nonzero derivation d such that
[d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. This result was subse-
quently, refined and extended by a number of authors. In [7], Bresar and Vuckman
showed that a prime ring must be commutative if it admits a nonzero left deriva-
tion. Recently, many authors have obtained commutativity theorems for prime
and semiprime rings admitting derivation, generalized derivation. Many consid-
erable works have been done on left (right) multipliers in prime and semiprime
rings during the last couple of decades([10-12]). In this paper, we investigate
the commutativity of prime rings admitting multipliers of R satisfying certain
identities and some related results have also been discussed. Throughout R will
represent an associative ring with center Z(R). For all x, y ∈ R, as a usual com-
mutator, we shall write [x, y] = xy − yx, and x ◦ y = xy + yx. Also, we make use
of the following two basic identities without any specific mention:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z

for all x, y, z ∈ R. Let R is a ring. An additive mapping F : R → R is called a
left multiplier if F (xy) = F (x)y holds for every x, y ∈ R. Similarly, an additive
mapping F : R→ R is called a right multiplier if F (xy) = xF (y) holds for every
x, y ∈ R. If F is both a left and a right multiplier of R, then it is called a multiplier
of R. An additive mapping F : R → R is called a generalized derivation if there
exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds for all
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x, y ∈ R, and d is called the associated derivation of F. Obviously, a generalized
derivation with d = 0 covers the concept of left multipliers. It is easy to see that
F : R→ R is a generalized derivation if and only if F is of the form F = d + H,
where d is a derivation and H is a left multiplier.

Definition 1.1. Let R be a prime ring. If F is a nonzero multiplier of R, then
F (x) ∈ Z(R) for all x ∈ Z(R).

Proof. Let z ∈ Z(R). By definition of F, we have

F (xz) = xF (z) = F (z)x = F (zx)

for every x ∈ R. Hence F (z) ∈ Z(R).
�

Lemma 1.2. Let R be a prime ring. If z ∈ Z(R) − {0} and zx ∈ Z(R), then
x ∈ Z(R).

2. Multipliers and commutativity of prime rings

Theorem 2.1. Let R be a prime ring. If F : R → R is a nonzero multiplier of
R and F (R) ⊆ Z(R), then R is commutative.

Proof. By hypothesis, we have

[F (x), r] = 0, ∀ x, r ∈ R. (2.1)

Replacing x by xy in (1), we obtain [F (x)y, r] = 0 for all x, y, r ∈ R, which
implies that F (x)[y, r] + [F (x), r]y = 0 for all x, y, r ∈ R. By the assumption, we
get

F (x)[y, r] = 0, ∀ x, y, r ∈ R. (2.2)

Substituting yz for y in this relation, we have F (x)y[z, r] = 0 for all x, y, z, r ∈ R.
This implies that F (x)R[z, r] = 0 for all x, z, r ∈ R. Since R is prime, we have
F (x) = 0 or [z, r] = 0 for all x, z, r ∈ R. Let K = {x ∈ R|F (x) = 0} and
L = {z ∈ R|[z, r] = 0, ∀ r ∈ R}. Then K and L are both additive subgroups and
K∪L = R, but (R,+) is not union of two its proper subgroups, which implies that
either K = R or L = R. In the former case, we have F = 0, contradiction, and so
L = R, that is, [z, r] = 0 for all z, r ∈ R, which implies that R is commutative.

�

Theorem 2.2. Let R be a prime ring and F : R → R be an multiplier of R. If
F (xy) = F (x)F (y) for all x, y ∈ R and F (x) 6= x for all x ∈ R, then F = 0.

Proof. By hypothesis, we have

F (xy) = F (x)y = F (x)F (y), ∀ x, y ∈ R. (2.3)

Replacing x by xw in (3) where w ∈ R, we have F (xw)y = F (xw)F (y), that is,
F (x)wy = F (x)wF (y) for all x, y, w ∈ R. This implies that F (x)w(y−F (y)) = 0
for all x, y, w ∈ R. Hence F (x)R(y − F (y)) = {0} x, y ∈ R. Since R is prime, we
have F (x) = 0 for all x ∈ R or y − F (y) = 0 for all x ∈ R. But F (x) 6= x for all
x ∈ R, and so F (x) = 0 for all x ∈ R, that is, F = 0.

�
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Theorem 2.3. Let R be a prime ring. If F is a nonzero multiplier of R such
that F ([x, y]) ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

F ([x, y]) ∈ Z(R), ∀ x, y ∈ R. (2.4)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (4),

F (z[x, y]) ∈ Z(R), ∀ x, y, z ∈ R, (2.5)

which implies that F (z)[x, y] ∈ Z(R) for all x, y, z ∈ R. Since R is prime and
F (z) 6= 0, we have [x, y] ∈ Z(R) for all x, y ∈ R. This implies that

[r, [x, y]] = 0, ∀ x, y, r ∈ R. (2.6)

Taking yx instead of y in the relation (6), we have [y, x][r, x] = 0 for all x, y, r ∈ R.
Again, replacing r by rs where s ∈ R, in the last relation, we have [y, x]R[s, x] =
{0} for all x, y, s ∈ R. Since R is prime, we have either [y, x] = 0 or [s, x] = 0
for all x, y, s ∈ R. Let K = {x ∈ R|[y, x] = 0, for all y ∈ R} and L = {x|[s, x] =
0, for all s ∈ R}. Then K and L are both additive subgroups and K ∪L = R, but
(R,+) is not union of two its proper subgroups, which implies that either K = R
or L = R. That is, in both cases, R is commutative.

�

Theorem 2.4. Let R be a prime ring. If F is a nonzero multiplier of R such
that F (x ◦ y) ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

F (x ◦ y) ∈ Z(R), ∀ x, y ∈ R. (2.7)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (7), we have

F (z(x ◦ y)) ∈ Z(R), ∀ x, y, z ∈ R, (2.8)

which implies that F (z)(x ◦ y) ∈ Z(R) for all x, y, z ∈ R. Since R is prime and
F (z) 6= 0, we have (x ◦ y) ∈ Z(R) for all x, y ∈ R. This implies that

[r, x ◦ y] = 0

for all x, y, r ∈ R. Substituting yx for y in this relation, we obtain [r, yx ◦ y] =
[r, y](x ◦ y) = 0 for all x, y, r ∈ R. Taking sr instead of r in the last relation, we
have [s, y]r(x ◦ y) = 0 for all x, y, r, s ∈ R. This implies that [s, y]R(x ◦ y) = {0}
x, y, s ∈ R. Since R is prime, we have either [s, y] = 0 or x ◦ y = 0 for all
x, y, s ∈ R. Let K = {y ∈ R|[s, y] = 0} and L = {y|x ◦ y = 0} for all x, s ∈ R.
Then K and L are both additive subgroups and K ∪ L = R, but (R,+) is not
union of two its proper subgroups, which implies that either K = R or L = R. In
the former case, R is commutative. If L = R, we have x ◦ y = 0 for all x, y ∈ R.
Replacing x by xs in the last relation, we obtain x[s, y] = 0 for all x, y, s ∈ R.
That is, R[s, y] = {0}. This implies that [s, y]R[s, y] = {0} for y, s ∈ R. Since R
is prime, we have [s, y] = 0 for all y, s ∈ R, which means that R is commutative.

�
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Theorem 2.5. Let R be a prime ring. If F is a nonzero multiplier of R such
that x ◦ F (y) ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

x ◦ F (y) ∈ Z(R), ∀ x, y ∈ R. (2.9)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing y by zy in (9), we have F (z)(x ◦ y) ∈ Z(R) for all
x, y ∈ R. Since R is prime and F (z) 6= 0, we have x ◦ y ∈ Z(R) for all x, y ∈ R.

Using the same argument of the last part of proof of Theorem 3.4, we get the
required result.

�

Theorem 2.6. Let R be a prime ring. If F is a nonzero multiplier of R such
that [x, F (y)] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

[x, F (y)] ∈ Z(R), ∀ x, y ∈ R. (2.10)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing y by zy in (10), we have F (z)[x, y] + [x, F (z)]y ∈ Z(R)
for all x, y ∈ R, which implies that F (z)[x, y] ∈ Z(R) for all x, y ∈ R. Since R is
prime and F (z) 6= 0, we have [x, y] ∈ Z(R) for all x, y ∈ R.

Using the same argument of the last part of proof of Theorem 3.3, we get the
required result.

�

Theorem 2.7. Let R be a prime ring. If F is a nonzero multiplier of R such that
[F (x), F (y)] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

[F (x), F (y)] ∈ Z(R), ∀ x, y ∈ R. (2.11)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing y by zy in (11), we have F (z)[F (x), y]+[F (x), F (z)]y ∈
Z(R) for all x, y ∈ R, which implies that F (z)[F (x), y] ∈ Z(R) for all x, y, z ∈ R.
Since R is prime and F (z) 6= 0, we have [F (x), y] ∈ Z(R) for all x, y ∈ R. Hence,
by Theorem 3.6, we get the required result.

�

Theorem 2.8. Let R be a prime ring. If F is a nonzero multiplier of R such that
F (x) ◦ F (y) ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

F (x) ◦ F (y) ∈ Z(R), ∀ x, y ∈ R. (2.12)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing y by zy in (12), we have F (z)(F (x)◦y)+[F (x), F (z)]y ∈
Z(R) for all x, y, z ∈ R, which implies that F (z)(F (x)◦y) ∈ Z(R) for all x, y ∈ R.
Since R is prime and F (z) 6= 0, we have F (x) ◦ y ∈ Z(R) for all x, y ∈ R.
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Using the same argument of the last part of proof of Theorem 3.5, we get the
required result.

�

Theorem 2.9. Let R be a prime ring. If F is a multiplier of R such that
F (x)F (y) = 0 for all x, y ∈ R, then F = 0.

Proof. By hypothesis, we have

F (x)F (y) = 0, ∀ x, y ∈ R. (2.13)

Replacing x by xz in (13), we get F (xz)F (y) = 0 for all x, y, z ∈ R, which implies
that F (x)zF (y) = 0 for all x, y, z ∈ R. Hence F (x)RF (y) = 0 for all x, y ∈ R.
Since R is prime, we obtain F (x) = 0 or F (y) = 0 for all x, y ∈ R. This implies
that F = 0.

�

Theorem 2.10. Let R be a prime ring. If F is a multiplier of R such that
F ([x, y])−[x, y] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

F ([x, y])− [x, y] ∈ Z(R), ∀ x, y ∈ R. (2.14)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (14), we have F ([zx, y]) − [zx, y] ∈ Z(R)
for all x, y ∈ R, which implies that F (z[x, y] + [z, y]x) − z[x, y] − [z, y]x ∈ Z(R)
for all x, y ∈ R. Hence we get F (z)[x, y] − z[x, y] ∈ Z(R) for all x, y ∈ R. This
implies that (F (z) − z)[x, y] ∈ Z(R) for all x, y ∈ R. Since R is prime and
F (z)− z ∈ Z(R), we have [x, y] ∈ Z(R) for all x, y ∈ R.

Using the same argument of the last part of proof of Theorem 3.3, we get the
required result.

�

Theorem 2.11. Let R be a prime ring. If F is a multiplier of R such that
F (x◦y)−(x◦y) ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is commutative.

Proof. By hypothesis, we have

F (x ◦ y)− (x ◦ y) ∈ Z(R), ∀ x, y ∈ R. (2.15)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (15), we have F (zx ◦ y)− (zx ◦ y) ∈ Z(R)
for all x, y ∈ R, which implies that F (z(x◦y)− [z, y]x)−z(x◦y)+ [z, y]x ∈ Z(R)
for all x, y ∈ R. Hence we get F (z)(x ◦ y) − z(x ◦ y) ∈ Z(R) for all x, y ∈ R.
This implies that (F (z)− z)(x ◦ y) ∈ Z(R) for all x, y ∈ R. Since R is prime and
F (z)− z ∈ Z(R), we have x ◦ y ∈ Z(R) for all x, y ∈ R.

Using the same argument of the last part of proof of Theorem 3.4, we get the
required result.

�

Theorem 2.12. Let R be a prime ring. If F is a nonzero multiplier of R such
that [F (x), y] − [x, y] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is
commutative.
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Proof. By hypothesis, we have

[F (x), y]− [x, y] ∈ Z(R), ∀ x, y ∈ R. (2.16)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (16), we have [F (zx), y)]− [zx, y] ∈ Z(R) for
all x, y ∈ R, which implies that F (z)[x, y] + [F (z), y]x − z[x, y] − [z, y]x ∈ Z(R)
for all x, y ∈ R. Hence we get F (z)[x, y]− z[x, y] ∈ Z(R) for all x, y ∈ R, and so
(F (z)− z)[x, y] ∈ Z(R) for all x, y ∈ R. Since R is prime and F (z)− z ∈ Z(R),
we have [x, y] ∈ Z(R) for all x, y ∈ R.

Using the same argument of the last part of proof of Theorem 3.3, we get the
required result.

�

Theorem 2.13. Let R be a prime ring. If F is a nonzero multiplier of R such
that (F (x) ◦ y) − (x ◦ y) ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is
commutative.

Proof. By hypothesis, we have

(F (x) ◦ y)− (x ◦ y) ∈ Z(R), ∀ x, y ∈ R. (2.17)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (17), we have (F (zx)◦y)−(zx◦y) ∈ Z(R) for
all x, y ∈ R, which implies that F (z)(x◦y)− [F (z), y]x−z(x◦y)− [z, y]x ∈ Z(R)
for all x, y ∈ R. Hence we get F (z)(x◦y)−z(x◦y) ∈ Z(R) for all x, y ∈ R, and so
(F (z)− z)(x ◦ y) ∈ Z(R) for all x, y ∈ R. Since R is prime and F (z)− z ∈ Z(R),
we have x ◦ y ∈ Z(R) for all x, y ∈ R.

Using the same argument of the last part of proof of Theorem 3.4, we get the
required result.

�

Theorem 2.14. Let R be a prime ring. If F is a nonzero multiplier of R such
that [F (x), F (y)] − [x, y] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is
commutative.

Proof. By hypothesis, we have

[F (x), F (y)]− [x, y] ∈ Z(R), ∀ x, y ∈ R. (2.18)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (18), we have [F (z)x, F (y)]− [zx, y] ∈ Z(R)
for all x, y ∈ R, which implies that F (z)[x, F (y)]+[F (z), F (y)]x−[z, y]x−z[x, y] ∈
Z(R) for all x, y ∈ R. Hence we get F (z)[x, F (y)]−z[x, y] ∈ Z(R) for all x, y ∈ R.
Taking y in place of x in the last relation, we obtain F (z)[y, F (y)] ∈ Z(R) for all
y ∈ R. Since R is prime and F (z) 6= 0, we have [y, F (y)] ∈ Z(R) for all y ∈ R.
Hence, by Theorem 3.6, we get the required result.

�

Theorem 2.15. Let R be a prime ring. If F is a nonzero multiplier of R such
that (F (x) ◦ F (y)) − [x, y] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is
commutative.
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Proof. By hypothesis, we have

(F (x) ◦ F (y))− [x, y] ∈ Z(R), ∀ x, y ∈ R. (2.19)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (19), we have ([F (z)x◦F (y))−[zx, y] ∈ Z(R)
for all x, y ∈ R, which implies that F (z)(x ◦ F (y)) + [F (z), F (y)]x − z[x, y] −
[z, y]x ∈ Z(R) for all x, y ∈ R. Hence we get F (z)[x, F (y)] − z[x, y] ∈ Z(R) for
all x, y ∈ R. Taking y in place of x in the last relation, we obtain F (z)[y, F (y)] ∈
Z(R) for all y ∈ R. Since R is prime and F (z) 6= 0, we have [y, F (y)] ∈ Z(R) for
all y ∈ R. Hence, by Theorem 3.6, we get the required result.

�

Theorem 2.16. Let R be a prime ring. If F is a nonzero multiplier of R such
that F ([x, y])− [F (x), F (y)] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is
commutative.

Proof. By hypothesis, we have

F ([x, y])− [F (x), F (y)] ∈ Z(R), ∀ x, y ∈ R. (2.20)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (20), we have F ([zx, y]) − [F (zx), F (y)] ∈
Z(R) for all x, y ∈ R, which implies that F (z)[x, y]+[F (z), F (y)]x−F (z)[x, F (y)]−
[F (z), F (y)]x ∈ Z(R) for all x, y ∈ R. Hence we get F (z)[x, y]− F (z)[x, F (y)] ∈
Z(R) for all x, y ∈ R. Taking y in place of x in the last relation, we obtain
F (z)[y, F (y)] ∈ Z(R) for all y ∈ R. Since R is prime and F (z) 6= 0, we have
[y, F (y)] ∈ Z(R) for all y ∈ R. Hence, by Theorem 3.6, we get the required
result.

�

Theorem 2.17. Let R be a prime ring. If F is a nonzero multiplier of R such
that F (x ◦ y)− [F (x), F (y)] ∈ Z(R) for all x, y ∈ R and F (Z(R)) 6= 0, then R is
commutative.

Proof. By hypothesis, we have

F (x ◦ y)− [F (x), F (y)] ∈ Z(R), ∀ x, y ∈ R. (2.21)

Since F (Z(R)) 6= 0, there exists z ∈ Z(R) such that F (z) 6= 0. Thus F (z) ∈ Z(R)
by Lemma 2.1. Replacing x by zx in (21), we have F (zx ◦ y) − [F (zx), F (y)] ∈
Z(R) for all x, y ∈ R, which implies that F (z)(x◦y)+[F (z), F (y)]x−F (z)[x, F (y)]−
[F (z), F (y)]x ∈ Z(R) for all x, y ∈ R. Hence we get F (z)(x◦ y)−F (z)[x, F (y)] ∈
Z(R) for all x, y ∈ R. Taking F (y) in place of x in the last relation, we obtain
F (z)(F (y) ◦ y) ∈ Z(R) for all y, z ∈ Z(R). Since R is prime and F (z) 6= 0, we
have F (y) ◦ y ∈ Z(R) for all y ∈ R. Hence, by Theorem 3.5, we get the required
result.

�
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