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TWO TOPICS IN NUMBER THEORY. THE GREATEST
k-FREE NUMBER THAT DIVIDES n AND FORMULAS FOR

COMPOSITE AND PRIME NUMBERS

RAFAEL JAKIMCZUK1 ∗

Abstract. In the first part we study the greatest k-free number that divides
n. Consequently, we generalize the kernel of the positive integer n. That is,
the greatest square-free number that divides n. In the second part we obtain
formulas for composite and prime numbers and prove some inequalities.

1. Introduction and Preliminary Notes

In the first part (sections 2 and 3) we study the greatest k-free number that
divides n. Consequently, we generalize the kernel of the positive integer n. That
is, the greatest square-free number that divides n. In the second part (section 4)
we obtain formulas for composite and prime numbers and prove some inequalities.
Let pk be the k-th prime. We show that if we know either the prime factorization
of 1, 2, . . . , n−1 or the primes pk not exceeding n−1 then we can obtain the prime
factorization of n. We also show that if we know the primes p1, p2, . . . , pn−1 then
we can obtain the prime pn. Finally The inequalities pn+1 < pn + n+ 1 (n ≥ 1),

pn <
n2

2
+ n

2
+ 1 (n ≥ 2) and pn < n2 (n ≥ 2) are proved. The composite numbers

also can be studied in short intervals (see, for example, [6])

Let us consider the prime factorization of a positive integer n = qs11 · · · qsrr where
the qi (i = 1, . . . , r) (r ≥ 1) are the different primes in the prime factorization and
the si (i = 1, . . . , r) are the multiplicities or exponents. Let k ≥ 2 an arbitrary
but fixed positive integer. A k-free number is a number such that 1 ≤ si ≤ k− 1,
we consider 1 a k-free number. If k = 2 we obtain the square-free numbers, if
k = 3 we obtain the cube-free numbers, etc. We shall denote a k-free number in
the form qk−1. Let Qk(x) be the number of k-free numbers not exceeding x. It is
well-known the following asymptotic formula (see, for example, [4] for a simple
proof)

Qk(x) =
1

ζ(k)
x+ o(x). (1.1)
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where ζ(s) denotes the Riemann zeta function.

We shall need the following well-known theorems.

Theorem 1.1. (Inclusion-exclusion principle)Let S be a set of N distinct el-
ements, and let S1, . . . , Sr be arbitrary subsets of S containing N1, . . . , Nr ele-
ments, respectively. For 1 ≤ i < j < . . . < l ≤ r, let Sij...l be the intersection of
Si, Sj, . . . , Sl and let Nij...l be the number of elements of Sij...l. Then the number
K of elements of S not in any of S1, . . . , Sr is

K = N −
∑
1≤i≤r

Ni +
∑

1≤i<j≤r

Nij −
∑

1≤i<j<k≤r

Nijk + . . .+ (−1)rN12...r.

Proof. See, for example, [7, page 84] or [2, page 233]. �

Theorem 1.2. (The second Möbius inversion formula) Let f(x) and g(x) be
functions defined for x ≥ 1. If

g(x) =
∑
n≤x

f
(x
n

)
(x ≥ 1)

then
f(x) =

∑
n≤x

µ(n)g
(x
n

)
(x ≥ 1)

where µ(n) is the Möbius function.

Proof. See, for example, [2, Chapter XVI, Theorem 268]. �

Theorem 1.3. The following formula holds
∞∑
n=1

µ(n)

nk
=

1

ζ(k)
.

Proof. See, for example, [2, Chapter XVII, Theorem 287 and page 245]. �

Theorem 1.4. Let us consider a strictly increasing sequence of positive integers,
we denote b a positive integer in this sequence. Let A(x) be the number of positive
integers in this sequence not exceeding x. That is A(x) =

∑
b≤x 1. Suppose that

A(x) = ρx + o(x), where ρ is a positive real number, that is, ρ is the positive
density of these integers. Then∑

b≤x

bk =
ρ

k + 1
xk+1 + o

(
xk+1

)
,

where k is an arbitrary but fixed positive integer.

Proof. See [3]. �

2. k-Free Numbers multiple of a Set of Primes

Let k ≥ 2 an arbitrary but fixed positive integer. Let q1, . . . , qs be s ≥ 1 distinct
primes. Let Mk

q1···qs(x) be the number of positive integers n not exceeding x such
that in their prime factorization appear the primes q1, . . . , qs with multiplicity
not multiple of k. We have the following theorem.
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Theorem 2.1. The following asymptotic formulas holds.

Mk
q1···qs(x) =

(
s∏
i=1

qk−1i − 1

qki − 1

)
x+ o(x). (2.1)

Proof. The number of positive integers n not exceeding x relatively prime with
q1 · · · qs will be (inclusion exclusion principle)

bxc −
∑
1≤i≤s

⌊
x

qi

⌋
+

∑
1≤i<j≤s

⌊
x

qiqj

⌋
− · · · =

s∏
i=1

(
1− 1

qi

)
x+ o(x). (2.2)

Let us consider the numbers whose prime factorization is of the form qr11 · · · qrss
where ri (i = 1, . . . , s) is not multiple of k. We have

s∏
i=1

(
1− 1

qi

) ∑
q
r1
1 ···q

rs
s

1

qr11 · · · qrss

=
s∏
i=1

(
1− 1

qi

)( ∞∑
i=1

1

qi1
−
∞∑
i=1

1

qki1

)
· · ·

(
∞∑
i=1

1

qis
−
∞∑
i=1

1

qkis

)

=
s∏
i=1

qk−1i − 1

qki − 1
. (2.3)

Let ε > 0. We shall choose the number A such that∑
q
r1
1 ···q

rs
s >A

1

qr11 · · · qrss
≤ ε. (2.4)

Therefore we have (see (2.2) and (2.4))

Mk
q1···qs(x) =

∑
q
r1
1 ···q

rs
s ≤A

(
s∏
i=1

(
1− 1

qi

)
x

qr11 · · · qrss
+ o(x)

)
+ F (x)

= x
s∏
i=1

(
1− 1

qi

) ∑
q
r1
1 ···q

rs
s ≤A

1

qr11 · · · qrss
+ o(x) + F (x)

=
s∏
i=1

qk−1i − 1

qki − 1
x− x

s∏
i=1

(
1− 1

qi

) ∑
q
r1
1 ···q

rs
s >A

1

qr11 · · · qrss
+ o(x) + F (x),(2.5)

where (see (2.4))

0 ≤ F (x) ≤
∑

q
r1
1 ···q

rs
s >A

x

qr11 · · · qrss
≤ εx. (2.6)

Equations (2.5), (2.4) and (2.6) give∣∣∣∣∣Mk
q1···qs(x)

x
−

s∏
i=1

qk−1i − 1

qki − 1

∣∣∣∣∣ ≤
s∏
i=1

(
1− 1

qi

)
ε+ ε+ ε ≤ 3ε.

That is (2.1), since ε can be arbitrarily small. The theorem is proved. �
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Let Qk
q1···qs(x) be the number of k-free numbers not exceeding x multiple of

q1 · · · qs. We have the following theorem.

Theorem 2.2. The following asymptotic formula holds.

Qk
q1···qs(x) =

1

ζ(k)

s∏
i=1

qk−1i − 1

qki − 1
x+ o(x). (2.7)

Proof. We have (see Theorem 2.1 and [2, Chapter XVIII, Theorem 333]).

Mk
q1···qs(y

k) = cyk + o(yk) = cyk + f(yk)yk =
∑
d≤y

Qk
q1···qs

((y
d

)k)
.

where for sake of simplicity we put c =
∏s

i=1
qk−1
i −1
qki −1

. Besides limx→∞ f(x) = 0

and |f(x)| < M . By Theorem 1.2 and Theorem 1.3 we have

Mk
q1···qs(y

k) =
∑
d≤y

µ(d)

(
c
(y
d

)k
+ f

((y
d

)k) yk

dk

)
= ykc

∑
d≤y

µ(d)

dk

+ yk
∑
d≤y

f

((y
d

)k) µ(d)

dk
=

1

ζ(k)
cyk +O(y) + o(yk)

=
1

ζ(k)

s∏
i=1

qk−1i − 1

qki − 1
yk + o(yk).

If we put yk = x then we obtain equation (2.7). Note that

ykc
∑
d>y

µ(d)

dk
= O(y)

and

yk
∑
d≤y

f

((y
d

)k) µ(d)

dk
= yk

∑
d≤ k
√
y

f

((y
d

)k) µ(d)

dk

+ yk
∑

k
√
y<d≤y

f

((y
d

)k) µ(d)

dk
= o(yk).

Since for all ε > 0 we have∣∣∣∣∣∑
d≤y

f

((y
d

)k) µ(d)

dk

∣∣∣∣∣ ≤ ∑
d≤ k
√
y

∣∣∣∣f ((yd)k
)∣∣∣∣ 1

dk

+
∑

k
√
y<d≤y

∣∣∣∣f ((yd)k
)∣∣∣∣ 1

dk
≤ εζ(k) +Mo(1) ≤ 3ε.

The theorem is proved. �

Let Rk
q1···qs(x) be the number of k-free numbers not exceeding x, relatively

prime to q1 · · · qs. The following theorem holds.
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Theorem 2.3. The following asymptotic formula holds.

Rk
q1···qs(x) =

1

ζ(k)

s∏
i=1

qk−1i (qi − 1)

qki − 1
x+ o(x). (2.8)

Proof. By the inclusion-exclusion principle, Theorem 2.2 and (1.1) we have

Rk
q1···qs(x) =

1

ζ(k)
x+ o(x)−

∑
1≤i≤s

(
1

ζ(k)

qk−1i − 1

qki − 1
x+ o(x)

)

+
∑

1≤i<j≤s

(
1

ζ(k)

qk−1i − 1

qki − 1

qk−1j − 1

qkj − 1
x+ o(x)

)
− · · ·

=
1

ζ(k)
x

s∏
i=1

(
1− qk−1i − 1

qki − 1

)
+ o(x).

That is, equation (2.8). The theorem is proved. �

3. The Greatest k-Free Number that Divides n

Let k ≥ 2 a positive integer. A number is k-full if all the distinct primes in
its prime factorization have multiplicity (or exponent) greater than or equal to
k. That is, the number qr11 · · · qrss (s ≥ 1) is k-full if ri ≥ k (i = 1, . . . , s). If k = 2
then the number is called square-full, etc.

The greatest k-free number that divides n = qr11 · · · qrss (s ≥ 1) will be denoted
uk(n). Note that uk(n) = qt11 · · · qtss , where ti = min{ri, k − 1} (i = 1, . . . , s) .
If k = 2 then the greatest square-free that divides n (u2(n)) is called kernel or
radical of n. In [3] the following theorem on the kernel function is proved (in [3]
the notation u(n) = u2(n) is used).

Theorem 3.1. Let h be an arbitrary but fixed positive integer. The following
asymptotic formula holds∑

n≤x

u2(n)h =
C2,h

h+ 1
xh+1 + o

(
xh+1

)
, (3.1)

where

C2,h =
∏
p

(
1− ph − 1

p (ph+1 − 1)

)
. (3.2)

In the following theorem we generalize the former theorem to the greatest k-free
number that divides n.

Theorem 3.2. Let k ≥ 2 an arbitrary but fixed positive integer and let h be an
arbitrary but fixed positive integer. The following asymptotic formula holds∑

n≤x

uk(n)h =
Ck,h
h+ 1

xh+1 + o
(
xh+1

)
, (3.3)
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where

Ck,h =
∏
p

(
1− ph − 1

pk−1 (ph+1 − 1)

)
. (3.4)

Proof. In this proof we shall denote qr11 · · · qrss the prime factorization of a k-full
number. The qi (i = 1, . . . , s) are the different primes in the prime factorization
and the ri (i = 1, . . . , s) are the multiplicities or exponents.

Let us consider the series ∑
q
r1
1 ···q

rs
s

(
qk−11 · · · qk−1s

)h
(qr11 · · · qrss )h+1

, (3.5)

where the sum run on all k-full numbers qr11 · · · qrss . The series (3.5) converges
since we have∑

q
r1
1 ···q

rs
s

(
qk−11 · · · qk−1s

)h
(qr11 · · · qrss )h+1

=
∑

q
r1
1 ···q

rs
s

1

qk−11 · · · qk−1s

1(
q
r1−(k−1)
1 · · · qrs−(k−1)s

)h+1
,

where the numbers q
r1−(k−1)
1 · · · qrs−(k−1)s run on all positive integers n greater

than or equal to 2 and the series
∑∞

n=2
1

nh+1 converges. In this proof (see the
introduction) qk−1 denotes a k-free number.

We have (see equation (1.1) and Theorem 1.4)∑
qk−1≤x

(qk−1)
h =

1

ζ(k)

xh+1

h+ 1
+ o

(
xh+1

)
. (3.6)

Let us consider the number
qk−1.q

r1
1 · · · qrss ,

where qk−1 and q1 · · · qs are relatively primes. The greatest k-free number that
divides this number is

qk−1.q
k−1
1 · · · qk−1s .

Therefore if the k-full number qr11 · · · qrss is fixed and the k-free number qk−1 is
variable we have (see Theorem 2.3 and Theorem 1.4)∑

qk−1q
r1
1 ···q

rs
s ≤x

(
qk−1q

k−1
1 · · · qk−1s

)h
=
(
qk−11 · · · qk−1s

)h ∑
qk−1≤ x

q
r1
1 ···q

rs
s

(qk−1)
h

=
(
qk−11 · · · qk−1s

)h 1

(h+ 1)ζ(k)

s∏
i=1

qk−1i (qi − 1)

qki − 1

xh+1

(qr11 · · · qrss )h+1

+ o
(
xh+1

)
. (3.7)

We denote Bk,h the sum of the series

Bk,h = 1 +
∑

q
r1
1 ···q

rs
s

s∏
i=1

qk−1i (qi − 1)

qki − 1

(
qk−11 · · · qk−1s

)h
(qr11 · · · qrss )h+1

. (3.8)

Note that this series converges since the series (3.5) converges (Comparison Cri-
terion).
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Let ε > 0. Since the series (3.5) converges we shall choose a k-full number A
such that

∑
q
r1
1 ···q

rs
s >A

(
qk−11 · · · qk−1s

)h
(qr11 · · · qrss )h+1

< ε. (3.9)

Now, we have (see (3.6), (3.7), (3.8) and (3.9))

∑
n≤x

uk(n)h =
xh+1

(h+ 1)ζ(k)
Bk,h + o

(
xh+1

)
− xh+1

(h+ 1)ζ(k)

∑
q
r1
1 ···q

rs
s >A

s∏
i=1

qk−1i (qi − 1)

qki − 1

(
qk−11 · · · qk−1s

)h
(qr11 · · · qrss )h+1

+ F (x). (3.10)

Note that

1h + 2h + · · ·+ nh ≤
∫ n

0

xh dx+ nh ≤ 2nh+1 (n ≥ 1) (h ≥ 1) (3.11)

Hence if Ax is the greatest k-full number not exceeding x then we have (see (3.11)
and (3.9))

0 ≤ F (x) ≤
∑

A<q
r1
1 ···q

rs
s ≤Ax

∑
qk−1q

r1
1 ···q

rs
s ≤x

(
qk−1q

k−1
1 · · · qk−1s

)h
≤

∑
A<q

r1
1 ···q

rs
s ≤Ax

∑
nq

r1
1 ···q

rs
s ≤x

(
nqk−11 · · · qk−1s

)h
=

∑
A<q

r1
1 ···q

rs
s ≤Ax

(
qk−11 · · · qk−1s

)h ∑
1≤n≤ x

q
r1
1 ···q

rs
s

nh

≤ 2xh+1
∑

A<q
r1
1 ···q

rs
s

(
qk−11 · · · qk−1s

)h
(qr11 · · · qrss )h+1

≤ 2εxh+1. (3.12)

Equations (3.10), (3.9) and (3.12) give∣∣∣∣∣
∑

n≤x uk(n)h

xh+1

(h+1)ζ(k)

−Bk,h

∣∣∣∣∣ ≤ ε+ ε+ 2(h+ 1)ζ(k)ε ≤ ε′ (x ≥ xε′), (3.13)

where ε′ can be arbitrarily small since ε can be arbitrarily small. Therefore
equation (3.13) gives∑

n≤x

uk(n)h =
1

ζ(k)

Bk,h

h+ 1
xh+1 + o

(
xh+1

)
, (3.14)
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where (see (3.8))

Ck,h =
1

ζ(k)
Bk,h

=
1

ζ(k)

1 +
∑

q
r1
1 ···q

rs
s

s∏
i=1

(qi − 1)

qki − 1

1(
q
r1−(k−1)
1 · · · qrs−(k−1)s

)h+1


=

∏
p

(
1− 1

pk

)∏
p

(
1 +

p− 1

pk − 1

(
1

ph+1
+

1

(p2)h+1
+ · · ·

))

=
∏
p

(
1− ph − 1

pk−1 (ph+1 − 1)

)
. (3.15)

Thus, equations (3.14) and (3.15) are equations (3.3) and (3.4). The theorem is
proved. �

4. Formulas for Composite Numbers and Prime Numbers

We denote pn the n-th prime number, gcd(a1, a2) the greatest common divisor
of a1 and a2 and lcm(a1, a2, . . . , as) the least common multiple of a1, a2, . . . , as.
In this section we show that if we know the prime factorization of 1, 2, . . . , n− 1
then we can obtain the prime factorization of n. In this way, by mathematical
induction, if we begin with 1 and p1 = 2 then we can build the sequence of all
prime factorizations of the positive integers. We need only three simple rules.

Rule 1) If lcm (gcd(1, n− 1), gcd(2, n− 2), . . . , gcd(n− 1, 1)) = 1, that is

gcd(k, n− k) = 1 (k = 1, 2, . . . , n− 1),

then n is prime.
Rule 2) If lcm (gcd(1, n− 1), gcd(2, n− 2), . . . , gcd(n− 1, 1)) = pk, where p

denotes a positive prime and k denotes a positive integer, then

n = p lcm (gcd(1, n− 1), gcd(2, n− 2), . . . , gcd(n− 1, 1)) = pk+1.

Rule 3) If lcm (gcd(1, n− 1), gcd(2, n− 2), . . . , gcd(n− 1, 1)) 6= 1 and

lcm (gcd(1, n− 1), gcd(2, n− 2), . . . , gcd(n− 1, 1)) 6= pk

, then

n = lcm (gcd(1, n− 1), gcd(2, n− 2), . . . , gcd(n− 1, 1)) .

The proof of these rules is very simple since k+(n−k) = n (k = 1, 2, . . . , n−1).
If we begin with 1, p1 then we obtain lcm(gcd(1, p1)) = lcm(1) = 1 and by rule

1 n = p2 is prime. Therefore we have 1, p1, p2 and consequently
lcm(gcd(1, p2), gcd(p1, p1)) = lcm(1, p1) = p1 and by rule 2 n = p21. Therefore

we have 1, p1, p2, p
2
1 and consequently lcm(gcd(1, p21), gcd(p1, p2)) = lcm(1, 1) = 1

and by rule 1 n = p3 is prime. Therefore we have 1, p1, p2, p
2
1, p3 and consequently

lcm(gcd(1, p3), gcd(p1, p
2
1), gcd(p2, p2)) = lcm(1, p1, p2) = p1p2 and by rule 3

n = p1p2. Therefore we have 1, p1, p2, p
2
1, p3, p1p2, etc.
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We can traduce these rules in theoretical formulas. Let us consider the primes
p such that 2 ≤ p ≤ n− 1. Now, consider the formula

f(p) =
n−1∑
k=1

⌊∣∣∣∣cos(π(kp
))∣∣∣∣ ∣∣∣∣cos(π(n− kp

))∣∣∣∣⌋ ,
where bc is the integer part function and || is the absolute value function. Let A
be the set of primes p such that 2 ≤ p ≤ n− 1 and f(p) 6= 0. If A is empty then
n is prime. If A is an unitary set, that is, A = {p}, then

n = p

1+
∑b log(n−1)

log p c
i=1

1⌊
n−1
pi

⌋ ∑n−1
k=1

⌊∣∣∣cos(π( k

pi

))∣∣∣∣∣∣cos(π(n−k

pi

))∣∣∣⌋

.

If A has at least two distinct primes, then

n =
∏
p∈A

p

∑b log(n−1)
log p c

i=1
1⌊

n−1
pi

⌋ ∑n−1
k=1

⌊∣∣∣cos(π( k

pi

))∣∣∣∣∣∣cos(π(n−k

pi

))∣∣∣⌋

.

Note that the inequality pi ≤ n− 1 hols for 1 ≤ i ≤ log(n−1)
log p

.

Another approach is by use of the well-known Legendre’s rule (see [2]). Namely,
if the prime p ≤ n then the exponent of p in the prime factorization of n! is

∞∑
k=1

⌊
n

pk

⌋
,

where clearly the sum has only a finite number of nonzero terms. Consequently
we have the following criterion. Let us consider the primes p ≤ n−1 and consider
the function

f(n) =
∏

p≤n−1

(
1 +

∞∑
k=1

(⌊
n

pk

⌋
−
⌊
n− 1

pk

⌋))
.

Clearly if f(n) = 1 then n is prime. On the other hand, if f(n) > 1 then n is
composite and its prime factorization is

n =
∏

p≤n−1

p
∑∞

k=1

(⌊
n

pk

⌋
−
⌊
n−1

pk

⌋)
.

Also, suppose that we know the first n − 1 primes. Namely, p1, p2, . . . , pn−1.
Then we can determine the prime pn by use of the following criterion. The prime
pn is the first positive integer s ≥ pn−1 + 1 such that∏

p≤pn−1

(
1 +

∞∑
k=1

(⌊
s

pk

⌋
−
⌊
s− 1

pk

⌋))
= 1.

In this form we can determine pn if we know p1, p2, . . . , pn−1. A formula of this
type was first proved by Gandhi (see [8]) and another formula of this type is given
in [5].
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Let pn be the n-th prime. Bertrand conjectured in 1845 the inequality pn+1 < 2pn
for n ≥ 1. This statement has been known as Bertrand’s postulate and it was
proved by Tschebycheff in 1852. In this article we prove the stronger statement
pn+1 < pn + n + 1 also for n ≥ 1. For this purpose we need strong inequalities
proved by Rosser and Schoenfeld in 1962 and by Dusart in 1999. That is, we
need the following fundamental lemma.

Lemma 4.1. We have the following inequalities.

pn < n log n+ n log log n− 1

2
n (n ≥ 20) (4.1)

pn > n log n+ n log log n− n (n ≥ 2) (4.2)

Proof. Inequality (4.1) is proved in [9]. Inequality (4.2) is proved in [1]. The
lemma is proved. �

Theorem 4.2. The following inequality holds

pn+1 < pn + n+ 1 (n ≥ 1) (4.3)

Proof. By use of a small table of primes pn (n ≤ 20) we can prove that inequality
(4.3) holds for n ≤ 19. Therefore we have to prove that inequality (4.3) holds for
n ≥ 20.

Let us consider the function

f(x) = 2 log(x+ 1) + 2 log log(x+ 1) +
2

log x
− x− 1 (x ≥ 20)

We have

f ′(x) =
2

x+ 1
+

2

(x+ 1) log(x+ 1)
− 2

x log2 x
− 1 <

2

x+ 1
+

2

x+ 1
− 1 < 0

for x ≥ 20. On the other hand, f(20) < 0. Therefore f(n) < 0 for n ≥ 20. The
inequality f(n) < 0 can be written in the equivalent form

2 (log(n+ 1) + 1) + 2

(
log log(n+ 1) +

1

log n

)
< n+ 3 (n ≥ 20) (4.4)

On the other hand, D(x log x) = log x + 1 and D(x log log x) = log log x + 1
log x

.

Therefore the mean value theorem and inequality (4.4) give

2 ((n+ 1) log(n+ 1)− n log n) + 2 ((n+ 1) log log(n+ 1)− n log log n)

< 2 (log(n+ 1) + 1) + 2

(
log log(n+ 1) +

1

log n

)
< n+ 3 (n ≥ 20)(4.5)

Inequality (4.5) can be written in the form

(n+ 1) log(n+ 1) + (n+ 1) log log(n+ 1)− 1

2
(n+ 1)

< n log n+ n log log n− n+ n+ 1 (n ≥ 20) (4.6)
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Finally, Lemma 4.1 and inequality (4.6) give

pn+1 < (n+ 1) log(n+ 1) + (n+ 1) log log(n+ 1)− 1

2
(n+ 1)

< n log n+ n log log n− n+ n+ 1 < pn + n+ 1 (n ≥ 20)

The theorem is proved. �

Corollary 4.3. Let dn = pn+1 − pn be. Let k be an arbitrary but fixed positive
integer. The following inequality holds for n ≥ 2.

n−1∑
i=1

dki <
(n+ 1)k+1

k + 1

Proof. Since xk is a function strictly increasing in the interval [0,∞) we have

ik <
∫ i+1

i
xk dx and consequently if n ≥ 2 then

∑n
i=1 i

k <
∫ n+1

0
xk dx. Therefore

if n ≥ 2 then inequality (4.3) gives

n−1∑
i=1

dki <
n−1∑
i=1

(i+ 1)k =

(
n∑
i=1

ik

)
− 1 <

n∑
i=1

ik <

∫ n+1

0

xk dx =
(n+ 1)k+1

k + 1
.

The corollary is proved. �

The prime number theorem in the form pn ∼ n log n implies that from a certain
value of n the inequality pn < n2 holds. Now, we give a very simple proof of the
following more precise results.

Corollary 4.4. If n ≥ 2 then pn <
n2

2
+ n

2
+ 1 and pn < n2.

Proof. Let us consider the following n − 1 inequalities (4.3) pi+1 < pi + i + 1
(1 ≤ i ≤ n − 1) (n ≥ 2). If we add these inequalities we obtain the inequality

pn <
n2

2
+ n

2
+ 1. We have p2 = 3 < 22. Suppose that if n ≥ 2 then pn < n2.

Inequality (4.3) gives pn+1 < pn +n+ 1 < n2 +n+ 1 < (n+ 1)2. Now, inequality
pn < n2 follows by mathematical induction. The corollary is proved. �

Corollary 4.5. If n ≥ 2 then
∏n−1

i=1 di < n!.

Proof. By inequality (4.3) we have
∏n−1

i=1 di =
∏n−1

i=1 (pi+1−pi) <
∏n−1

i=1 (i+1) = n!.
The corollary is proved. �
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