ON sfp-INJECTIVE AND sfp-FLAT MODULES

C. SELVARAJ∗ AND P. PRABAKARAN

ABSTRACT. Let R be a ring. A left R-module M is said to be sfp-injective if, for every exact sequence $0 \to K \to L$ with K and L super finitely presented left R-modules, the induced sequence $\text{Hom}(L, M) \to \text{Hom}(K, M) \to 0$ is exact. A right R-module N is called sfp-flat if, for every exact sequence $0 \to K \to L$ with K and L super finitely presented left R-modules, the induced sequence $0 \to N \otimes K \to N \otimes L$ is exact. We study precovers and preenvelopes by sfp-injective and sfp-flat modules, including their properties under (almost) excellent extensions of rings.

1. Introduction and preliminaries

Throughout this paper, R denotes an associative ring with identity and all modules are unitary. As usual, $pd_R(M)$, $id_R(M)$, and $fd_R(M)$ will denote the projective, injective and flat dimensions of an R-module M, respectively. The character module $\text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$ is denoted by M^+. Let M, N be R-modules, then we use $\text{Hom}(M, N)$ (resp. $M \otimes N$) to denote $\text{Hom}_R(M, N)$ (resp. $M \otimes_R N$). For unexplained concepts and notations, we refer the reader to [3, 11, 16].

We first recall some known notions and facts needed in the sequel.

Let C be a class of right R-modules and M a right R-module. Following [3], we say that a map $f \in \text{Hom}_R(C, M)$ with $C \in C$ is a C-precover of M, if the group homomorphism $\text{Hom}_R(C', f) : \text{Hom}_R(C', C) \to \text{Hom}_R(C', M)$ is surjective for each $C' \in C$. Let M, N be R-modules, then we use $\text{Hom}(M, N)$ (resp. $M \otimes N$) to denote $\text{Hom}_R(M, N)$ (resp. $M \otimes_R N$). For unexplained concepts and notations, we refer the reader to [3, 11, 16].

A right R-module M is called FP-injective (or absolutely pure) [12] if $\text{Ext}_R^1(F, M) = 0$ for all finitely presented right R-modules F.

A left R-module A is said to be n-presented if there exists an exact sequence of left R-modules: $F_n \to F_{n-1} \to \cdots \to F_0 \to A \to 0$, in which every F_i is a finitely generated free or projective left R-module. Clearly, a module is 0-presented (resp.
1-presented) if and only if it is finitely generated (resp. finitely presented), and every \(m \)-presented module is \(n \)-presented for \(m \geq n \). For any two non-negative integers \(n, d \), a left \(R \)-module \(M \) is called \((n, d)\)-injective \([17]\) if \(\text{Ext}_R^{d+1}(P, M) = 0 \) for all \(n \)-presented right \(R \)-modules \(P \); a right \(R \)-module \(M \) is called \((n, d)\)-flat \([17]\) if \(\text{Tor}_R^{d+1}(M, P) = 0 \) for all \(n \)-presented left \(R \)-modules \(P \).

A left \(R \)-module \(M \) is called super finitely presented \([5]\) if there exists an exact sequence of left \(R \)-modules: \(\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0 \), where each \(F_i \) is finitely generated and projective. Recently, Gao and Wang introduced the notion of \(\text{l.sp.gldim} \) by introducing the notion of \(\text{sfp-projective} \) modules and give some equivalent characterization to \(\text{l.sp.gldim}(R) = 0 \) in terms of \(\text{sfp-projective} \) modules.

In section 2, \(\text{sfp-injective} \) modules and \(\text{sfp-flat} \) modules are defined and studied. We prove that every left \(R \)-module has a \(\text{sfp-injective} \) cover (resp. preenvelope) and every right \(R \)-module has a \(\text{sfp-flat} \) cover (resp. preenvelope). Also we introduced the notion of \(\text{sfp-projective} \) modules and give some equivalent characterization to \(\text{l.sp.gldim}(R) = 0 \) in terms of \(\text{sfp-projective} \) modules.

In Section 3, we further study the exchange properties of \(\text{sfp-injective} \) and \(\text{sfp-flat} \) modules, as well as \(\text{sfp-injective} \) precovers (resp. preenvelopes) and \(\text{sfp-flat} \) precovers (resp. preenvelopes) under (almost) excellent extensions of rings.
2. sfp-INJECTIVE AND sfp-FLAT Modules

We begin the section with the following lemma.

Lemma 2.1. [13] Let $0 \to A \to B \to C \to 0$ be an exact sequence of left R-modules. If any two of A, B, C are super finitely presented, then so is the third one.

Now we give the concepts of sfp-injective modules and sfp-flat modules.

Definition 2.2.

(1) A left R-module M is said to be sfp-injective if for every exact sequence $0 \to K \to L$ with K and L super finitely presented left R-modules, the induced sequence $\text{Hom}(L, M) \to \text{Hom}(K, M) \to 0$ is exact.

(2) A right R-module N is called sfp-flat if, for every exact sequence $0 \to K \to L$ with K and L super finitely presented left R-modules, the induced sequence $0 \to N \otimes K \to N \otimes L$ is exact.

Remark 2.3.

(1) Note that every injective (resp. flat) module is sfp-injective (resp. sfp-flat) module. Also we have the following implications:

\[
\begin{align*}
\text{FP-injective} & \Rightarrow (2,0)-\text{injective} \Rightarrow \cdots \Rightarrow \text{weak injective} \\
& \downarrow \quad \downarrow \quad \downarrow \\
\text{fp-injective} & \Rightarrow \text{fp}_2-\text{injective} \Rightarrow \cdots \Rightarrow \text{sfp-injective}
\end{align*}
\]

and

\[
\begin{align*}
\text{Flat} & \Rightarrow (2,0)\text{-flat} \Rightarrow \cdots \Rightarrow \text{weak flat} \\
& \downarrow \quad \downarrow \quad \downarrow \\
\text{fp-flat} & \Rightarrow \text{fp}_2\text{-flat} \Rightarrow \cdots \Rightarrow \text{sfp-flat}
\end{align*}
\]

(2) If R is a coherent ring then all the modules in the first diagram coincide with FP-injective modules and all the modules in the second diagram coincide with flat modules by [6, Remark 2.2(1)] and [7, Theorem 2.4].

Proposition 2.4. Let $\{M_i\}_I$ be a class of left R-modules, and $\{N_i\}_I$ a class of right R-modules. Then,

(1) $\prod_I M_i$ (resp. $\bigoplus_I M_i$) is sfp-injective if and only if each M_i is a sfp-injective module.

(2) $\prod_I N_i$ (resp. $\bigoplus_I N_i$) is sfp-flat if and only if each N_i is a sfp-flat module.

Proof. (1). We know that $\text{Hom}(A, \prod_I M_i) \cong \prod_I \text{Hom}(A, M_i)$ for any left R-module A and in addition that $\text{Hom}(A, \bigoplus_I M_i) \cong \bigoplus_I \text{Hom}(A, M_i)$ for any finitely presented left R-module A. Since every super finitely presented module is finitely presented, the assertion holds.

(2). Since $(\bigoplus_I N_i) \otimes A \cong \bigoplus_I (N_i \otimes A)$ for any left R-module A and $(\prod_I N_i) \otimes A \cong \prod_I (N_i \otimes A)$ for any finitely presented left R-module A, the assertion holds. \qed

In what follows let us denote the class of all sfp-injective left R-modules by \mathcal{SI} and the class of all sfp-flat right R-modules by \mathcal{SF}.
Lemma 2.5. The following are true for any ring R:

1. A left R-module M is sfp-injective if and only if M^+ is sfp-flat.
2. A right R-module N is sfp-flat if and only if N^+ is sfp-injective.
3. The class SI (resp., SF) is closed under pure submodules, pure quotients and direct limits.
4. A super finitely presented left R-module is sfp-injective if and only if it is weak injective.

Proof. (1). Let $0 \to K \to L$ be any exact sequence with K and L are super finitely presented left R-modules. Consider the following commutative diagram:

$$
\begin{array}{ccc}
M^+ \otimes K & \to & M^+ \otimes L \\
\downarrow \sigma_K & & \downarrow \sigma_L \\
\text{Hom}(K,M)^+ & \to & \text{Hom}(L,M)^+.
\end{array}
$$

Since any super finitely presented left R-module is finitely presented, σ_K and σ_L are isomorphisms by [11, Lemma 3.60]. Then, M is sfp-injective if and only if $\text{Hom}(K,M) \to \text{Hom}(K,M)^+ \to \text{Hom}(L,M)^+$ is exact if and only if $0 \to M^+ \otimes K \to M^+ \otimes L$ is exact if and only if M^+ is sfp-flat by the definition.

(2). Let $0 \to A \to B$ be any exact sequence with A and B super finitely presented left R-modules. Then N is sfp-flat if and only if $0 \to N \otimes A \to N \otimes B$ is exact if and only if $(N \otimes B)^+ \to (N \otimes A)^+ \to 0$ is exact if and only if $\text{Hom}(B,N^+) \to \text{Hom}(A,N^+) \to 0$ is exact if and only if N^+ is sfp-injective by the definition.

(3). Let $0 \to A \to B \to C \to 0$ be a pure exact sequence with B sfp-injective. Then, the sequence $0 \to C^+ \to B^+ \to A^+ \to 0$ is split. Since B^+ is sfp-flat by (1), it follows that A^+ and C^+ are sfp-flat by Proposition 2.4. So A and C are sfp-injective by (1) again. Thus, the class SI is closed under pure submodules and pure quotients. Similarly, we get that class SF is closed under pure submodules and pure quotients. Since for every finitely presented left R-module A, we have

$$\text{Hom}(A, \lim_{\to} M_i) \cong \lim_{\to} \text{Hom}(A, M_i)$$

and for any left R-module A, we have

$$\lim_{\to}(N_i \otimes A) \cong \lim_{\to}(N_i \otimes A)$$

the class SI (resp., SF) is closed under direct limits.

(4). It is enough to show that every super finitely presented sfp-injective module is weak injective. Let A be a super finitely presented sfp-injective module and let $0 \to A \to B \to C \to 0$ be any exact sequence of left R-modules with C super finitely presented. Then, B is super finitely presented by Lemma 2.1, and $0 \to \text{Hom}(C,A) \to \text{Hom}(B,A) \to \text{Hom}(A,A) \to 0$ is exact by the definition of sfp-injective modules. Thus, $0 \to A \to B \to C \to 0$ is split, that is, $\text{Ext}^1(C,A) = 0$. So A is weak injective. \qed
Theorem 2.6. The following hold for any ring R:

1. Every left (resp. right) R-module has a sfp-injective (resp. sfp-flat) cover.
2. Every left (resp. right) R-module has a sfp-injective (resp. sfp-flat) preenvelope.

Proof. (1). From Proposition 2.4 and Lemma 2.5, we get SI and SF are closed under direct sums and pure quotients. Then, every left (resp. right) R-module has a sfp-injective (resp. sfp-flat) cover by [8, Theorem 2.5].

(2). Since SI and SF are closed under direct products and pure submodules by Proposition 2.4 and Lemma 2.5, every left (resp. right) R-module has a sfp-injective (resp. sfp-flat) preenvelope by [10, Corollary 3.5]. □

Proposition 2.7. The following hold for any ring R:

1. If $M \to N$ is a sfp-injective preenvelope of a left R-module M, then $N^+ \to M^+$ is a sfp-flat precover of M^+.
2. If $M \to N$ is a sfp-flat preenvelope of a right R-module M, then $N^+ \to M^+$ is a sfp-injective precover of M^+.

Proof. By Lemma 2.5, we have $SF^+ \subseteq SI$ and $SI^+ \subseteq SF$. Now both the assertions follows immediately from [4, Theorem 3.1]. □

Proposition 2.8. For any ring R, the following are equivalent:

1. R is weak injective as a left R-module;
2. Every left R-module has an epic sfp-injective cover;
3. Every right R-module has a monic sfp-flat preenvelope.

Proof. (1) \Rightarrow (2). Let M be a left R-module. Then there exists an exact sequence $F \to M \to 0$ with F free. Note that R is sfp-injective as a left R-module. From Proposition 2.4, we get that F is sfp-injective. Since M has a sfp-injective cover $f : I \to M$ by Theorem 2.6, then f is epic.

(2) \Rightarrow (1). Assume that $f : M \to _RR$ is an epic sfp-injective cover of $_RR$. Then, $_RR$ is isomorphic to a direct summand of M, and so it is sfp-injective by Proposition 2.4. Since $_RR$ is super finitely presented, $_RR$ is weak injective by Lemma 2.5.

(1) \Rightarrow (3). Let M be a right R-module. By Theorem 2.6 M has a sfp-flat preenvelope $g : M \to F$. Since $(RR)^+$ is an injective cogenerator in the category of right R-modules, there exists an exact sequence $0 \to M \to \prod(RR)^+$. By assumption, $_RR$ is weak injective module, and thus sfp-injective, and so $(RR)^+$ is sfp-flat by Lemma 2.5. Thus, $\prod(RR)^+$ is sfp-flat by Proposition 2.4. Therefore, g is monic.

(3) \Rightarrow (1). Since the injective right R-module $(RR)^+$ has a monic sfp-flat preenvelope $h : (RR)^+ \to F$ by assumption, then $(RR)^+$ is a direct summand of F and so it is sfp-flat by Proposition 2.4, which implies that $_RR$ is sfp-injective from Lemma 2.5. Since $_RR$ is super finitely presented, $_RR$ is weak injective by Lemma 2.5. It follows that R is weak injective as a left R-module. □

Theorem 2.9. The following are equivalent for a ring R:

1. Every quotient of any sfp-injective left R-module is sfp-injective;
(2) Every left R-module has a monic sfp-injective cover;
(3) Every submodule of any sfp-flat right R-module is sfp-flat;
(4) Every right R-module has an epic sfp-flat envelope.

Proof. (1) \Rightarrow (2). For any left R-module M, there is a sfp-injective cover $f : E \to M$ by Theorem 2.6(1). Note that $\text{im}(f)$ is sfp-injective by (1). It is easy to verify that $\text{im}(f) \to M$ is a monic sfp-injective cover.

(2) \Rightarrow (3). Let N be a submodule of a sfp-flat right R-module M. Then the exact sequence $0 \to N \to M$ induces the exact sequence $M^+ \to N^+ \to 0$. Note that M^+ is sfp-injective and N^+ has a monic sfp-injective cover by (2). Thus N^+ is sfp-injective, and so N is sfp-flat.

(3) \Rightarrow (4). For any right R-module M, there is a sfp-flat preenvelope $f : M \to F$ by Theorem 2.6(2). Since $\text{im}(f)$ is sfp-flat by (3), we have $M \to \text{im}(f)$ is an epic sfp-flat preenvelope, equivalently, an epic sfp-flat envelope.

(4) \Rightarrow (1). Let M be any sfp-injective left R-module and N any submodule of M. Then we get a short exact sequence $0 \to N \to M \to M/N \to 0$ which induces the exact sequence $0 \to (M/N)^+ \to M^+$. Since $(M/N)^+$ has an epic sfp-flat envelope and M^+ is sfp-flat, we have $(M/N)^+$ is sfp-flat, and so M/N is sfp-injective.

\begin{theorem}
The following are equivalent for a ring R:
\begin{enumerate}
\item Every left R-module is sfp-injective;
\item Every right R-module is sfp-flat;
\item Every super finitely presented left R-module is sfp-injective;
\item Every super finitely presented submodule of any super finitely presented left R-module is its direct summands;
\item R is weak injective as a left R-module and every submodule of any sfp-flat right R-module is sfp-flat.
\end{enumerate}
\end{theorem}

Proof. (1) \Rightarrow (2). Let N be any right R-module. Since N^+ is sfp-injective, N is sfp-flat by Lemma 2.5.

(2) \Rightarrow (1). For any left R-module M, since M^+ is sfp-flat, M is sfp-injective by Lemma 2.5.

(1) \Rightarrow (3) is trivial.

(3) \Rightarrow (4). Let A be a super finitely presented submodule of any super finitely presented left R-module B. Then we get an exact sequence $0 \to A \to B \to C \to 0$. Note that C is super finitely presented by Lemma 2.1. Since A is weak injective by (3) and Lemma 2.5(4), $\text{Ext}^1(C, A) = 0$. So the exact sequence $0 \to A \to B \to C \to 0$ is split. Thus A is a direct summand of B.

(4) \Rightarrow (5). Let $0 \to A \to B \to C \to 0$ be any exact sequence with A and B super finitely presented left R-modules. Then, this sequence is split. So every left R-module is sfp-injective and every right R-module is sfp-flat. Hence the assertions holds.

(5) \Rightarrow (1). Let M be a left R-module. Then there is an exact sequence $F \to M \to 0$ with F free. Since R is weak injective as a left R-module, F is weak injective, and so is sfp-injective. Thus M is sfp-injective by Theorem 2.9.
Theorem 2.11. The following are equivalent for a ring R:

1. Every sfp-injective left R-module is weak injective;
2. Every sfp-flat right R-module is weak flat;
3. The character module of a sfp-injective left R-module is weak flat;
4. A left R-module sfp-injective if and only if its character module is weak flat.

Proof. By using [6, Theorem 2.10, Remark 2.2(2)] and Lemma 2.5 it is easy to verify the equivalence. □

Next we introduce the concept of sfp-projective modules, which may be viewed as a dual of sfp-injective modules.

Definition 2.12. A left R-module M is said to be sfp-projective if for every exact sequence $A \rightarrow B \rightarrow 0$ with A and B super finitely presented left R-modules, the induced sequence $\text{Hom}(M, A) \rightarrow \text{Hom}(M, B) \rightarrow 0$ is exact.

Theorem 2.13. The following are equivalent for a ring R:

1. $l.sp.gldim(R) = 0$;
2. Every left R-module is sfp-projective;
3. Every super finitely presented left R-module is sfp-projective.

Proof. (1) \Rightarrow (2). Since every epimorphism $K \rightarrow L$ with K and L super finitely presented left R-modules is split by (1), every left R-module is sfp-projective.

(2) \Rightarrow (3) is trivial.

(3) \Rightarrow (1). Let M be any super finitely presented left R-module. There is an epimorphism $P \rightarrow M$ with P finitely generated projective. Since M is sfp-projective, $P \rightarrow M$ is a split epimorphism. Thus M is projective. So $l.sp.gldim(R) = 0$. □

Remark 2.14.

1. Note that every fp-projective module (see [9, Definition 4.1]) is sfp-projective. If R is a coherent ring then sfp-projective modules are coincide with fp-projective modules.

2. As Gao mentioned in [6, Remark 3.11] there exists a ring with $l.sp.gldim(R) = 0$ which is not von Neumann regular. By Theorem 2.13 and [9, Theorem 4.2] there exists sfp-projective module which is not fp-projective.

3. SFP-INJECTIVE AND SFP-FLAT MODULES UNDER (ALMOST) EXCELLENT EXTENSIONS OF RINGS

Recall that a ring S is said to be an almost excellent extension of a subring R if the following conditions are satisfied:

1. S is a finite normalizing extension of R, that is, R and S have the same identity and there are elements $s_1, \ldots, s_n \in S$ such that $S = Rs_1 + \cdots + Rs_n$ and $Rs_i = s_i R$ for all $i = 1, \ldots, n$,
2. S is flat and $R S$ is projective,
3. S is left R-projective, that is, if $S M$ is a submodule of $S N$ and $R M$ is a direct summand of $R N$, then $S M$ is a direct summand of $S N$.

Further, S is an excellent extension of R if S is an almost excellent extension of R and S is free with basis s_1, \ldots, s_n as both a right and a left R-module with $s_1 = 1_R$.

Lemma 3.1. Let S be a ring extension of a ring R.

1. If S_R (resp. rS) is flat, then an R-module RA (resp. A_R) is super finitely presented implies that $S \otimes_R A$ (resp. $A \otimes_R S$) is super finitely presented S-module.
2. If S_R (resp. rS) is finitely generated projective, then an S-module AS (resp. SA) is super finitely presented implies that A_R (resp. rA) is super finitely presented R-module.

Proof. (1). Since S_R is flat, the assertion holds by the standard isomorphisms $S \otimes_R R^n \cong S^n$ for all $n \geq 1$.

(2). If rS is a finitely generated projective left R-module, then we have a isomorphism $\text{Hom}_R(S,S^n) \cong rS^n$ for all $n \geq 1$. The assertion easily follows from the definition of super finitely presented modules. □

Proposition 3.2. Let S be an almost excellent extension of a subring R and SM a left S-module. Then the following are equivalent:

1. SM is sfp-injective;
2. RM is sfp-injective;
3. $\text{Hom}_R(S,M)$ is a sfp-injective left S-module.

Proof. (1) \Rightarrow (2). Let $0 \rightarrow RA \rightarrow RB$ be an exact sequence of left R-modules with RA and RB super finitely presented. Since S_R is a flat, from the definition of almost excellent extensions we get an exact sequence of left S-modules

$$0 \rightarrow S_R \otimes_R A \rightarrow S_R \otimes_R B.$$

Then, $S_R \otimes_R A$ and $S_R \otimes_R B$ is super finitely presented left S-modules by Lemma 3.1 since S is an almost excellent extension of a subring R. By (1), the sequence

$$\text{Hom}_S(S_R \otimes_R B,M) \rightarrow \text{Hom}_S(S_R \otimes_R A,M) \rightarrow 0$$

is exact, which implies that the sequence

$$\text{Hom}_R(B,\text{Hom}_S(S,M)) \rightarrow \text{Hom}_R(A,\text{Hom}_S(S,M)) \rightarrow 0$$

is also exact. Thus, we get an exact sequence

$$\text{Hom}_R(B,M) \rightarrow \text{Hom}_R(A,M) \rightarrow 0,$$

that is, RM is a sfp-injective left R-module.

(2) \Rightarrow (3). Assume that $0 \rightarrow SA \rightarrow SB$ is an exact sequence of left S-modules with SA and SB super finitely presented. Since rS is finitely generated projective, RA and RB are super finitely presented left R-modules by Lemma 3.1. By (2), we get an exact sequence

$$\text{Hom}_R(B,M) \rightarrow \text{Hom}_R(A,M) \rightarrow 0,$$

which yields the exactness of the sequence

$$\text{Hom}_R(S \otimes_S B,M) \rightarrow \text{Hom}_R(S \otimes_S A,M) \rightarrow 0.$$
Then, we get the exact sequence

\[\text{Hom}_S(B, \text{Hom}_R(S, M)) \to \text{Hom}_S(A, \text{Hom}_R(S, M)) \to 0. \]

Thus, \(\text{Hom}_R(S, M) \) is a sfp-injective left \(S \)-module.

(3) \(\Rightarrow \) (1). By [15, Lemma 1.1], \(sM \) is isomorphic to a direct summand of \(\text{Hom}_R(S, M) \). Thus, \(sM \) is an sfp-injective left \(S \)-module.

\[\square \]

Corollary 3.3. Let \(S \) be an almost excellent extension of a subring \(R \) and \(M_S \) a right \(S \)-module. Then, the following are equivalent:

1. \(M_S \) is sfp-flat;
2. \(M_R \) is sfp-flat;
3. \(M \otimes_R S \) is sfp-flat right \(S \)-module.

Proof. (1) \(\Leftrightarrow \) (2). By Lemma 2.5 and Proposition 3.2, \(M_S \) is a sfp-flat right \(S \)-module if and only if \(s(M^+) \) is a sfp-injective left \(S \)-module if and only if \(R(M^+) \) is a sfp-injective left \(R \)-module if and only if \(M_R \) is a sfp-flat right \(R \)-module.

(1) \(\Leftrightarrow \) (3). By Lemma 2.5 and Proposition 3.2, \(M_S \) is a sfp-flat right \(S \)-module if and only if \(s(M^+) \) is a sfp-injective left \(S \)-module, if and only if \((M \otimes_R S)^+ \cong \text{Hom}_R(S, M^+) \) is a sfp-injective left \(S \)-module if and only if \(M \otimes_R S \) is a sfp-flat right \(S \)-module.

Let \(S \) be an almost excellent extension of a subring \(R \). From [15, Lemma 1.1], we see that a left \(S \)-module \(sM \) is isomorphic to a direct summand of \(\text{Hom}_R(S, M) \) and \(s \otimes_R M \). In the sequel, we denote \(\lambda_M : sM \to \text{Hom}_R(S, M) \) (resp. \(\tau_M : sM \to s \otimes_R M \)) as the inclusion and \(\pi_M : \text{Hom}_R(S, M) \to sM \) (resp. \(\rho_M : s \otimes_R M \to sM \)) as the canonical projection. Let \(\theta : M \to N \) be a homomorphism of left \(R \)-modules, we use \(\theta_* \) to denote the induced homomorphism: \(\theta_* = \text{Hom}_R(S, \theta) : \text{Hom}_R(S, M) \to \text{Hom}_R(S, N) \) for any left \(R \)-module \(S \).

Theorem 3.4. Suppose that \(S \) is an almost excellent extension of a subring \(R \) and \(\theta : sM \to sN \) is an \(S \)-homomorphism.

1. If the \(R \)-homomorphism \(\theta : R_M \to R_N \) is a sfp-injective precover of \(R_N \), then \(\pi_N \theta_* : \text{Hom}_R(S, M) \to sN \) is a sfp-injective precover of \(sN \).
2. If the \(R \)-homomorphism \(\theta : R_M \to R_N \) is a sfp-injective preenvelope of \(R_M \), then \(\theta_* \lambda_M : sM \to \text{Hom}_R(S, N) \) is a sfp-injective preenvelope of \(sM \).

Proof. (1). Since \(R_M \) is sfp-injective, \(\text{Hom}_R(S, M) \) is a sfp-injective left \(S \)-module by Proposition 3.2. For any sfp-injective left \(S \)-module \(sG \) and any \(S \)-homomorphism \(\alpha : sG \to sN \), \(R_G \) is a sfp-injective left \(R \)-module by Proposition 3.2. So there exists \(\beta : R_G \to R_M \) such that \(\theta \beta = \alpha \). Thus we obtain the following commutative diagram:

\[
\begin{array}{ccc}
\text{Hom}_R(S, M) & \xleftarrow{\beta_*} & \text{Hom}_R(S, G) & \xleftarrow{\pi_G} & sG \\
\downarrow{\alpha_*} & & \downarrow{\lambda_G} & & \downarrow{\alpha} \\
\text{Hom}_R(S, M) & \xrightarrow{\theta_*} & \text{Hom}_R(S, N) & \xrightarrow{\pi_N} & sN
\end{array}
\]
So we have,

\[(\pi_N\theta_*)(\beta_\lambda_G) = \pi_N(\theta\beta)_\lambda G = \pi_N\alpha_\lambda G = \pi_N\lambda_G = \alpha.\]

Hence \(\pi_N\theta_*\) is a sfp-injective precover of \(S_N\).

(2) can be proved dually. \(\square\)

Lemma 3.5. Let \(S\) be an excellent extension of a subring \(R\) and \(S_M\) a left \(S\)-module. Then the following are equivalent:

1. \(S_M\) is sfp-flat;
2. \(R_M\) is sfp-flat;
3. \(S \otimes_R M\) is a sfp-flat left \(S\)-module.

Proof. (1) \(\Rightarrow\) (2). Let \(0 \to K_R \to L_R\) be an exact sequence with \(K_R\) and \(L_R\) super finitely presented right \(R\)-modules. Since \(R_S\) is flat, we get the \(S\)-module exact sequence

\[0 \to K \otimes_R S \to L \otimes_R S.\]

Note that \(K \otimes_R S\) and \(L \otimes_R S\) are super finitely presented right \(S\)-modules. Thus by (1), we get the exact sequence

\[0 \to (K \otimes_R S) \otimes_S M \to (L \otimes_R S) \otimes_S M,\]

which gives the exactness of the sequence

\[0 \to K \otimes_R (S \otimes_S M) \to L \otimes_R (S \otimes_S M),\]

So we have the exact sequence \(0 \to K \otimes_R M \to L \otimes_R M\). Therefore \(R_M\) is sfp-flat.

(2) \(\Rightarrow\) (3). Let \(0 \to A_S \to B_S\) be an exact sequence with \(A_S\) and \(B_S\) super finitely presented right \(S\)-modules. Since \(S_R\) is finitely generated free, \(A_R\) and \(B_R\) are super finitely presented right \(R\)-modules. So by (2), we obtain the exact sequence

\[0 \to A \otimes_R M \to B \otimes_R M,\]

which gives rise to the exact sequence

\[0 \to (A \otimes_S S) \otimes_R M \to (B \otimes_S S) \otimes_R M.\]

Consequently, we have the exact sequence

\[0 \to A \otimes_S (S \otimes_R M) \to B \otimes_S (S \otimes_R M).\]

Thus \((S \otimes_R M)\) is a sfp-flat left \(S\)-module.

(3) \(\Rightarrow\) (1). By [15, Lemma 1.1] \(S_M\) is isomorphic to a direct summand of \(S \otimes_R M\), the assertion holds. \(\square\)

Theorem 3.6. Let \(S\) be an excellent extension of a subring \(R\) and \(\theta : S_M \to S_N\) is an \(S\)-homomorphism.

1. If the \(R\)-homomorphism \(\theta : R_M \to R_N\) is a sfp-flat preenvelope of \(R_M\), then \((1 \otimes \theta)\tau_M : S_M \to S \otimes_R N\) is a sfp-flat preenvelope of \(S_M\).
(2) If the R-homomorphism $\theta : R^M \to R^N$ is a sfp-flat precover of R^N, then $\rho_N(1 \otimes \theta) : S \otimes_R M \to S^N$ is a sfp-flat precover of S^N.

Proof. (1) By Lemma 3.5, $S \otimes_R N$ is a sfp-flat left S-module. For any sfp-flat left S-module S^Q and any S-homomorphism $\alpha : S^M \to S^Q$, since S^Q is a sfp-flat left R-module by Lemma 3.5, there exists $\beta : R^N \to R^Q$ such that $\theta \beta = \alpha$. Consider the following commutative diagram:

$$
\begin{array}{ccc}
S^M & \xrightarrow{\tau_M} & S \otimes_R M \\
\downarrow{\rho_M} & & \downarrow{1 \otimes \theta} \\
S^Q & \xrightarrow{\tau_Q} & S \otimes_R Q \\
\end{array}
$$

Thus we obtain

$$
\rho_Q(1 \otimes \beta)(1 \otimes \theta)\tau_M = \rho_Q(1 \otimes (\beta \theta))\tau_M = \rho_Q(1 \otimes \alpha)\tau_M = \rho_Q\tau_Q\alpha = \alpha.
$$

So $(1 \otimes \theta)\tau_M$ is a sfp-flat preenvelope of S^M.

(2) can be proved dually. \qed

References

1 Department of Mathematics, Periyar University, Salem - 636 011, TN, India.
E-mail address: selvavlr@yahoo.com

2 Department of Mathematics, Periyar University, Salem - 636 011, TN, India.
E-mail address: prabakaranpvkr@gmail.com