PROPERTY \((m) \) UNDER PERTURBATIONS

M.H.M. RASHID

Abstract. A Banach space operator is said to obey property \((m) \) if the isolated points of the spectrum \(\sigma(T) \) of \(T \) which are eigenvalues of finite multiplicity are exactly those points \(\lambda \) of the spectrum for which \(T - \lambda I \) is an upper semi-Browder. In this article, we study the stability of property \((m) \), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, quasi-nilpotent operators, Riesz operator or algebraic operators commuting with \(T \).

1. Introduction and preliminaries

Let \(\mathcal{B}(\mathcal{X}) \) denote the algebra of bounded operators acting on an infinite complex Banach space \(\mathcal{X} \). We use \(I \) to denote the identity operator on \(\mathcal{X} \), and \(\mathcal{K}(\mathcal{X}) \) to denote the ideal of all compact operators on \(\mathcal{X} \) and \(\mathcal{F}(\mathcal{X}) \) to denote the ideal of all finite rank operators on \(\mathcal{X} \). For an arbitrary operator \(T \in \mathcal{B}(\mathcal{X}) \), \(\ker(T) \) denotes its kernel and \(\mathcal{R}(T) \) denotes its range. We set \(\alpha(T) = \dim \ker(T) \) and \(\beta(T) = \dim \mathcal{X}/\mathcal{R}(T) \). Denote by

\[SF_+(\mathcal{X}) := \{ T \in \mathcal{B}(\mathcal{X}) : \alpha(T) < \infty \text{ and } \mathcal{R}(T) \text{ is closed} \} \]

the class of all upper semi-Fredholm operators, and by

\[SF(\mathcal{X}) := \{ T \in \mathcal{B}(\mathcal{X}) : \beta(T) < \infty \} \]

the class of all lower semi-Fredholm operators. The class of all semi-Fredholm operators is defined by \(SF(\mathcal{X}) := SF_+(\mathcal{X}) \cup SF(\mathcal{X}) \), while the class of all Fredholm operator is defined by \(F(\mathcal{X}) := SF_+(\mathcal{X}) \cap SF(\mathcal{X}) \). For a semi-Fredholm operator \(T \) we define the index, \(\text{ind}(T) \), by \(\text{ind}(T) = \alpha(T) - \beta(T) \). Let \(a := a(T) \) be the ascent of an operator \(T \); i.e., the smallest nonnegative integer \(p \) such that \(\ker(T^p) = \ker(T^{p+1}) \). If such integer does not exist we put \(a(T) = \infty \). Analogously, let \(d := d(T) \) be the descent of an operator \(T \); i.e., the smallest nonnegative integer \(q \) such that \(\mathcal{R}(T^q) = \mathcal{R}(T^{q+1}) \), and if such integer does not exist we put \(d(T) = \infty \). It is well known that if \(a(T) \) and \(d(T) \) are both finite then \(a(T) = d(T) \) \[12, \text{Proposition 38.3}\]. Moreover, \(0 < a(T - \lambda I) = d(T - \lambda I) < \infty \) precisely when \(\lambda \) is a pole of the resolvent of \(T \), see Heuser \[12, \text{Proposition 50.2}\].

For a subset \(G \) of an arbitrary topological space, \(\overline{G} \) denotes the closure of \(G \).
Let \mathbb{C} denotes the complex plane. If K is a subset of \mathbb{C}, then $\text{iso}K$ denotes the set of all isolated points of K and $\text{acc}K$ denotes the set of all points of accumulation of K. We use $\sigma(T)$ and $\sigma_0(T)$ to denote the spectrum and the approximate point spectrum of T respectively. We use T^* to denote the adjoint of $T \in \mathcal{B} (\mathcal{X})$.

Two important classes of operators are the class of all upper semi-Browder operators

$$B_+ (\mathcal{X}) := \{ T \in SF_+ (\mathcal{X}) : a(T) < \infty \}$$

and the class of all lower semi-Browder operators

$$B_- (\mathcal{X}) := \{ T \in SF_- (\mathcal{X}) : d(T) < \infty \}.$$ The class of all Browder operators is defined by $B(\mathcal{X}) := B_+ (\mathcal{X}) \cap B_- (\mathcal{X})$. Recall that a bounded linear operator $T \in \mathcal{B} (\mathcal{X})$ is said be a Weyl operator, $T \in W(\mathcal{X})$ if $T \in \mathcal{F} (\mathcal{X})$ and has index 0. Obviously, if $T \in B(\mathcal{X})$ then $T \in W(\mathcal{X})$.

These classes of operators motivate the definition of several spectra. The upper semi-Browder spectrum of $T \in \mathcal{B} (\mathcal{X})$ is defined by

$$\sigma_{ub}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \notin B_+ (\mathcal{X}) \},$$

the lower semi-Browder spectrum of $T \in \mathcal{B} (\mathcal{X})$ is defined by

$$\sigma_{lb}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \notin B_- (\mathcal{X}) \},$$

while the Browder spectrum of $T \in bx$ is defined by

$$\sigma_{b}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \notin B(\mathcal{X}) \},$$

The Weyl spectrum of $T \in \mathcal{B} (\mathcal{X})$ is defined by

$$\sigma_{w}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \notin W(\mathcal{X}) \},$$

We have that $\sigma_{w}(T) = \sigma_{w}(T^*)$, while $\sigma_{ub}(T) = \sigma_{lb}(T^*)$ and $\sigma_{ub}(T^*) = \sigma_{lb}(T)$. Evidently,

$$\sigma_{w}(T) \subseteq \sigma_{b}(T) = \sigma_{w}(T) \cup \text{acc} \sigma(T).$$

For $T \in \mathcal{B} (\mathcal{X})$, $SF^-_-(\mathcal{X}) := \{ T \in SF_+(\mathcal{X}) : \text{ind}(T) \leq 0 \}$ and $SF^+_-(\mathcal{X}) := \{ T \in SF_+(\mathcal{X}) : \text{ind}(T) \geq 0 \}$. The Weyl (or essential) approximate point spectrum is defined by $\sigma_{SF^-_-(T)} := \{ \lambda \in \mathbb{C} : T - \lambda \notin SF^+_-(\mathcal{X}) \}$. Note that $\sigma_{SF^-_-(T)}$ is the intersection of all approximate point spectra $\sigma_a(T + K)$ of compact perturbations K of T, see [14]. The Weyl surjectivity spectrum $\sigma_{SF^+_-(T)} := \{ \lambda \in \mathbb{C} : T - \lambda \notin SF^-_+(\mathcal{X}) \}$. The spectrum $\sigma_{SF^+_-(T)}$ coincides with the intersection of all surjectivity spectra $\sigma_s(T + K)$ of compact perturbations K of T, see [14]. Clearly, the last two spectra are dual each other, i.e., $\sigma_{SF^-_-(T)} = \sigma_{SF^+_-(T^*)}$ and $\sigma_{SF^+_-(T)} = \sigma_{SF^-_-(T^*)}$. Moreover, $\sigma_{w}(T) = \sigma_{SF^-_-(T)} \cup \sigma_{SF^+_-(T)}$. Since $a(T) < \infty$ entails $\text{ind}(T) \leq 0$ and $d(T) < \infty$ entails $\text{ind}(T) \geq 0$, we have $\sigma_{SF^-_-(T)} \subseteq \sigma_{ub}(T)$ and $\sigma_{SF^+_-(T)} \subseteq \sigma_{lb}(T)$. Hence the relationship between these spectra are given by the following equalities:

$$\sigma_{ub}(T) = \sigma_{SF^-_-(T)} \cup \text{acc} \sigma_a(T), \quad (1.1)$$

$$\sigma_{lb}(T) = \sigma_{SF^+_-(T)} \cup \text{acc} \sigma_a(T), \quad (1.2)$$
see [16].

Following [10] we say that \(T \in \mathcal{B}(\mathcal{X}) \) has the single-valued extension property (SVEP) at point \(\lambda \in \mathbb{C} \) if for every open neighborhood \(U_\lambda \) of \(\lambda \), the only analytic function \(f : U_\lambda \to \mathcal{X} \) which satisfies the equation \((T - \mu)f(\mu) = 0\) is the constant function \(f \equiv 0 \). An operator \(T \in \mathcal{B}(\mathcal{X}) \) is said to have the SVEP if \(T \) has the SVEP at every point \(\lambda \in \mathbb{C} \).

An operator \(T \in \mathcal{B}(\mathcal{X}) \) has the SVEP at every point of the resolvent \(\rho(T) := \mathbb{C} \setminus \sigma(T) \). The identity theorem for analytic functions ensures that for every \(T \in \mathcal{B}(\mathcal{X}) \), both \(T \) and \(T^* \) have the SVEP at the points of the boundary \(\partial \sigma(T) \) of the spectrum \(\sigma(T) \). In particular, that both \(T \) and \(T^* \) have the SVEP at every isolated point of \(\sigma(T) = \sigma(T^*) \). The SVEP is inherited by the restrictions to closed invariant subspaces, i.e., if \(T \in \mathcal{B}(\mathcal{X}) \) has the SVEP at \(\lambda_0 \) and \(M \) is closed \(T \)-invariant subspace then \(T|_M \) has SVEP at \(\lambda_0 \). Let \(S(T) := \{ \lambda \in \mathbb{C} : T \text{ does not have the SVEP at } \lambda \} \). Observe that \(T \in \mathcal{B}(\mathcal{X}) \) has SVEP if and only if \(S(T) = \emptyset \).

2. Property (m) under Perturbation

For a bounded operator \(T \in \mathcal{B}(\mathcal{X}) \), set
\[
\pi^0(T) : \sigma(T) \setminus \sigma_b(T) = \{ \lambda \in \sigma(T) : T - \lambda \in \mathcal{B}(\mathcal{X}) \}.
\]
Note that every \(\lambda \in \pi^0(T) \) is a pole of the resolvent and hence an isolated point of \(\sigma(T) \), see [12, Proposition 50.2]. Moreover, \(\pi^0(T) = \pi^0(T^*) \). Define
\[
E^0(T) := \{ \lambda \in iso\sigma(T) : 0 < \alpha(T - \lambda) < \infty \}.
\]
Obviously,
\[
\pi^0(T) \subseteq E^0(T) \text{ for every } T \in \mathcal{B}(\mathcal{X}).
\]

For a bounded operator \(T \in \mathcal{B}(\mathcal{X}) \), let us define
\[
E^0_a(T) := \{ \lambda \in iso\sigma_a(T) : 0 < \alpha(T - \lambda) < \infty \},
\]
and
\[
\pi^0_a(T) := \sigma_a(T) \setminus \sigma_{ub}(T) = \{ \lambda \in \sigma_a(T) : T - \lambda \in \mathcal{B}_+(\mathcal{X}) \}.
\]

Lemma 2.1. ([3]) For every \(T \in \mathcal{B}(\mathcal{X}) \), we have

(a) \(\pi^0(T) \subseteq \pi^0_a(T) \subseteq E^0_a(T) \) and
(b) \(E^0(T) \subseteq E^0_a(T) \).

Following Harte and W.Y. Lee [11], we shall say that \(T \) satisfies Browder’s theorem if
\[
\sigma_b(T) = \sigma_w(T),
\]
while, \(T \in \mathcal{B}(\mathcal{X}) \) is said to satisfy \(a \)-Browder’s theorem if
\[
\sigma_{SF^+_a}(T) = \sigma_{ub}(T).
\]

Obviously, \(a \)-Browder’s theorem holds for \(T \) implies Browder’s theorem holds for \(T \) and the converse is not true. Following Coburn [7], we say that Weyl’s theorem holds for \(T \in \mathcal{B}(\mathcal{X}) \) if
\[
\Delta(T) := \sigma(T) \setminus \sigma_w(T) = E^0(T).
\]
An approximate point version of Weyl’s theorem is a-Weyl’s theorem: according to Rakočević [17] an operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy a-Weyl’s theorem if

$$\Delta_a(T) := \sigma_a(T) \setminus \sigma_{SF_+}(T) = E^0_a(T).$$

Note that

a-Weyl’s theorem holds for $T \implies$ Weyl’s theorem holds for T

while the converse in general does not hold.

Definition 2.2. A bounded operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy

(i) property (w) if $\Delta_a(T) = E^0(T)$ [15].

(ii) property (t) if $\Delta_+(T) := \sigma(T) \setminus \sigma_{SF_+}(T) = E^0(T)$ [19].

Definition 2.3. ([20]) A bounded operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy property (m) if

$$\sigma(T) \setminus \sigma_{ub}(T) = E^0(T).$$

Weyl’s theorem corresponds to the half of property (m), in the following sense:

Theorem 2.4. ([20]) If $T \in \mathcal{B}(\mathcal{X})$ then the following assertions are equivalent:

(i) property (m) holds for T;

(ii) T satisfies Weyl’s theorem and $\sigma_{ub}(T) = \sigma_w(T)$.

Theorem 2.5. Let $T \in \mathcal{B}(\mathcal{X})$. Then the following assertions are equivalent:

(i) Property (t) holds for T;

(ii) T satisfies property (m) and $\sigma_{ub}(T) = \sigma_{SF_+}(T)$.

Proof. (i) \implies (ii) Assume that T obeys property (t) then $\Delta_+(T) = E^0(T)$. If $\lambda \in \sigma(T) \setminus \sigma_{ub}(T)$, then $\lambda \in \Delta_+(T) = E^0(T)$ and so $\sigma(T) \setminus \sigma_{ub}(T) \subseteq E^0(T)$. To prove the other inclusion. Let $\lambda \in E^0(T)$ be an arbitrary given. Then λ is an isolated in $\sigma(T)$ and hence T and T^* has SVEP at λ. As T has property (t), we have $T - \lambda \in SF_+(\mathcal{X})$ and hence $\lambda \in B_+(\mathcal{X})$. The SVEP of T and T^* at λ implies by [3, Remark 1.2] that $a(T - \lambda) = d(T - \lambda) = \infty$. As $\alpha(T - \lambda) < \infty$ then it follows by [1, Theorem 3.4] that $a(T - \lambda) = \beta(T - \lambda) = \infty$ and so $\lambda \in \sigma(T) \setminus \sigma_{ub}(T)$. Therefore, $E^0(T) \subseteq \sigma(T) \setminus \sigma_{ub}(T)$ and so T obeys property (m).

(ii) \implies (i) Suppose that T obeys property (m) and $\sigma_{ub}(T) = \sigma_{SF_+}(T)$. Then

$$E^0(T) = \sigma(T) \setminus \sigma_{ub}(T) = \sigma(T) \setminus \sigma_{SF_+}(T).$$

That is, T obeys property (t). \blacksquare

Let $H_{nc}(\sigma(T))$ denotes the set of all complex-valued functions f, dened and regular in some neighborhood of $\sigma(T)$, such that f is not constant on the connected components of its domain of denition.

Recall that $T \in \mathcal{B}(\mathcal{X})$ is isolated, provided that all isolated points of $\sigma(T)$ are eigenvalues of T. $T \in \mathcal{B}(\mathcal{X})$ is a-isolated provided that all isolated points of $\sigma_a(T)$ are eigenvalues of T. It is well-known that $\partial \sigma(T) \subseteq \sigma_a(T)$, so all isolated points of $\sigma(T)$ are also isolated points of $\sigma_a(T)$. Now it is obvious that if T is a-isolated, then it is also isolated.
We shall consider nilpotent perturbations of operators satisfying property \((m)\). It easy to check that if \(N\) is a nilpotent operator commuting with \(T\), then
\[
\sigma(T) = \sigma(T + N) \text{ and } \sigma_a(T) = \sigma_a(T + N) \text{ and } \sigma_{ub}(T) = \sigma_{ub}(T + N). \tag{2.1}
\]
Hence it follows from Equation (2.1)
\[
E^0(T) = E^0(T + N) \text{ and } E^0_a(T) = E^0_a(T + N), \tag{2.2}
\]
from [9, Theorem 2.13], we have
\[
\sigma_{SF^+}(T) = \sigma_{SF^+}(T + N). \tag{2.3}
\]

Theorem 2.6. Let \(T \in \mathcal{B}(\mathcal{X})\) and let \(N\) be a nilpotent operator commuting with \(T\). If property \((m)\) holds for \(T\) then it also holds for \(T + N\).

Proof. Firstly we prove that \(E^0(T) = E^0(T + N)\). It is enough to prove that if \(0 \in E^0(T)\), then \(0 \in E^0(T + N)\). Suppose that \(0 \in E^0(T)\), so \(0 < \dim \ker(T - \lambda) < \infty\).

We prove that \(\dim \ker(T + N) < \infty\). If \((T + N)x = 0\) for some \(x \neq 0\), then \(Tx = Nx\). Since \(N\) commutes with \(T\), it follows that for every positive integer \(m\): \(T^m x = (1)^m N^m x\). Let \(n\) be the smallest positive integer such that \(N^n = 0\). We get that there is some positive integer \(r, r \leq n\), such that \(T^r x = 0\). Thus \(\ker(T + N) \subseteq \ker(T^r)\) and \(\ker(T + N)\) is finite dimensional.

We prove that \(\dim \ker(T + N) > 0\). There is some \(x \neq 0\) such that \(Tx = 0\). Then \((T + N)^n x = 0\), \(0 \in \sigma_p(T + N) \subseteq \sigma(T + N)\) and \(\dim \ker(T + N) > 0\). By Eq. (2.1) we know that \(\sigma(T) = \sigma(T + N)\), so it follows that \(0 \in E^0(T + N)\). Thus, using Eq. (2.1) we get
\[
\sigma_{ub}(T + N) = \sigma_{ub}(T) = \sigma(T) \setminus E^0(T) = \sigma(T + N) \setminus E^0(T + N).
\]
Thus property \((m)\) holds for \(T + N\). \(\square\)

The following example shows that the result of Theorem 2.6 does not hold if we do not assume that the nilpotent operator commutes with \(T\).

Example 2.7. Let \(\mathcal{X} := l^2(\mathbb{N})\) and \(T\) and \(N\) be defined by
\[
T(x_1, x_2, \cdots) := \left(0, \frac{x_1}{2}, \frac{x_2}{3}, \cdots\right), \quad (x_n) \in \mathcal{X}
\]
and
\[
N(x_1, x_2, \cdots) := \left(0, -\frac{x_1}{2}, 0, 0, \cdots\right), \quad (x_n) \in \mathcal{X}.
\]
Clearly, \(N\) is a nilpotent operator and \(T\) is a quasinilpotent operator satisfying property \((m)\). On the other hand, it easily seen that \(0 \in E^0(T + N)\) and \(0 \notin \sigma(T + N) \setminus \sigma_{ub}(T + N)\), so that \(T + N\) does not satisfies property \((m)\).

The next result from [8] is very useful.

Lemma 2.8. If \(\alpha(T) = n\) and \(\dim \mathcal{R}(T) = m\), then
\[
\alpha(T + N) \leq n + m,
\]
where \(m\) and \(n\) are non-negative integers.

Theorem 2.9. Suppose that \(F\) is an arbitrary nite rank operator and \(TF = FT\). If \(T\) is isoloid and property \((m)\) holds for \(T\), then property \((m)\) holds for \(T + F\).
Proof. It is enough to prove that $0 \in \sigma(T + F) \setminus \sigma_{ub}(T + F)$ if and only if $0 \in E^0(T + F)$. Firstly we prove that if $0 \in \sigma(T + F) \setminus \sigma_{ub}(T + F)$, then $T + F \in B_+(\mathcal{X})$ and $0 < \alpha(T + F) < \infty$. We need to prove that $0 \in iso\sigma(T + F)$. It follows that $T \in B_+(\mathcal{X})$, so $0 \notin \sigma_{ub}(T)$. It is possible that $0 \notin \sigma(T)$. In this case we get $0 \notin \text{acc}\sigma(T)$ and hence $0 \notin \text{acc}\sigma_a(T + F)$, so $0 \in E^0(T + F)$. The second possibility is that $0 \in \sigma(T)$. Since property (m) holds for T, we get that $0 \notin \text{acc}\sigma(T)$ and again $0 \in E^0(T + F)$.

To prove the opposite implication, suppose that $0 \in E^0(T + F)$. Then $0 \in iso\sigma(T + F)$ and $0 < \alpha(T + F) < \infty$. Hence $0 \notin \text{acc}\sigma(T)$ and by Lemma 2.8 it follows that $0 \leq \alpha(T) < \infty$. Again we distinguish two cases. Firstly, if $0 \notin \sigma(T)$, then $T \in B_+(\mathcal{X})$ and $T + F \in B_+(\mathcal{X})$, $0 \in \sigma(T + F) \setminus \sigma_{ub}(T + F)$. On the other hand, if $0 \in \sigma(T)$ then $0 \in iso\sigma(T)$. Since T is isoloid, we get that $0 < \alpha(T) < \infty$ and $0 \notin \sigma_{ub}(T)$. Now, we have $T \in B_+(\mathcal{X})$, $T + F \in B_+(\mathcal{X})$ and $0 \in \sigma(T + F) \setminus \sigma_{ub}(T + F)$. \hfill \blacksquare

Note that the operator N in Example 2.7 is also a nite rank operator not commuting with T. In general, property (m) is also not transmitted under commuting nite rank perturbation.

Example 2.10. Let $S : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be an injective quasinilpotent operator, and let $U : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be dened:

$$U(x_1, x_2, \cdots) := (x_1, 0, 0, \cdots) \quad (x_n) \in \ell^2(\mathbb{N}).$$

Dene on $\mathcal{X} := \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{N})$ the operators T and F by

$$T := I \oplus S \quad \text{and} \quad F := U \oplus 0.$$

Clearly, F is a nite rank operator and $TF = FT$. It is easy to check that

$$\sigma(T) = \sigma_a(T) = \sigma_w(T) = \sigma_{ub}(T) = \{0, 1\}.$$

Now, both T and T^* have SVEP, since $\sigma(T) = \sigma(T^*)$ is nite. Moreover, $E^0(T) = \sigma(T) \setminus \sigma_{ub}(T) = \emptyset$, so T satises property (m). On other hand, $\sigma(T + F) = \sigma_{ub}(T + F) = \{0, 1\}$, and $E^0(T + F) = \{0\}$, so that property (m) does not hold for $T + F$.

Recall that $T \in \mathcal{B}(\mathcal{X})$ is said to be a Riesz operator if $T - \lambda \in \mathcal{F}(\mathcal{X})$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the following result may be found in Rakočević [18]:

Lemma 2.11. Let $T \in \mathcal{B}(\mathcal{X})$ and R be a Riesz operator commuting with T. Then

(i) $T \in B_+(\mathcal{X})$ if and only if $T + R \in B_+(\mathcal{X})$.

(ii) $T \in B_-(\mathcal{X})$ if and only if $T + R \in B_-(\mathcal{X})$.

(iii) $T \in B(\mathcal{X})$ if and only if $T + R \in B(\mathcal{X})$.

Define

$$E^0_f := \{\lambda \in iso\sigma(T) : \alpha(T - \lambda) < \infty\}.$$

Evidently, $E^0(T) \subseteq E^0_f(T)$ for every operator $T \in \mathcal{B}(\mathcal{X})$.
Lemma 2.12. Let $T \in \mathcal{B}(\mathcal{X})$. If R is a Riesz operator that commutes with T, then
\[
E^0(T + R) \cap \sigma(T) \subseteq iso\sigma(T).
\] (2.4)

Proof. By [13, Lemma 2.3], we have
\[
E^0(T + R) \cap \sigma(T) \subseteq E^0(T + R) \cap \sigma(T) \subseteq iso\sigma(T).
\]

Lemma 2.13. Let $T \in \mathcal{B}(\mathcal{X})$ be an isoloid operator satisfying property (m). If F is an operator that commutes with T and for which there exists a positive integer n such that F^n is nite rank, then $E^0(T + F) = \pi^0_a(T + F)$.

Proof. Let $\lambda \in E^0(T + F)$ be an arbitrary given. We distinguish two cases. Firstly, if $\lambda \notin \sigma(T)$, then $T + F - \lambda \in B_+(\mathcal{X})$, and hence $\lambda \in \sigma_{ub}(T)$. Suppose that $\lambda \in \sigma(T)$, it follows, by Lemma 2.12, that $\lambda \in iso\sigma(T)$. Furthermore, since the operator $(T + F - \lambda)^n|_{\ker(T - \lambda)} = F^n|_{\ker(T - \lambda)}$ is both of finite-dimensional range and kernel, kernel, we obtain easily that also $\ker(T - \lambda)$ is finite-dimensional, and therefore that $\lambda \in E^0(T)$, because T is isoloid. On the other hand, if T obeys property (m), then $E^0(T) \cap \sigma_{ub}(T) = \emptyset$. Consequently, $T - \lambda \in B_+(\mathcal{X})$ and hence $T + F - \lambda \in B_+(\mathcal{X})$, which implies that $\lambda \in \pi^0_a(T + F)$.

To prove the other inclusion, let $\lambda \in \pi^0_a(T + F)$ be arbitrary given. Then $\lambda \in iso\sigma_a(T + F)$ and $T + F - \lambda \in B_+(\mathcal{X})$, so $\sigma(T + F - \lambda) < \infty$. Since $T + F - \lambda$ has closed range, the condition $\lambda \in \sigma_a(T + F)$ entails that $\alpha(T + F - \lambda) > 0$. Therefore, in order to show that $\lambda \in E^0(T + F)$, we need only to prove that λ is an isolated point of $\sigma(T + F)$. We know that $\lambda \in iso\sigma_a(T)$. We have from Lemma 2.11 that $(T + F) - \lambda - F = T\lambda \in B_+(\mathcal{X})$ so that $\lambda \in \sigma_a(T) \setminus \sigma_{ub}(T) = \pi^0_a(T)$. Now, by assumption T obeys property (m) so, by [20, Theorem 2.2], $\pi^0_a(T) = E^0(T)$. Moreover, T satisfies Weyl’s theorem and hence
\[
E^0(T) = \pi^0_a(T) = \sigma(T) \setminus \sigma_b(T).
\]

Therefore, $T - \lambda$ is Browder and hence $T + F - \lambda$ is Browder, so
\[
0 < a(T + F - \lambda) = d(T + F - \lambda) < \infty
\]
and hence λ is a pole of the resolvent of $T + F$. Consequently, λ is an isolated point of $\sigma(T + F)$.

Theorem 2.14. If $T \in \mathcal{B}(\mathcal{X})$ has property (m) and R is a Riesz operator for which $TR = RT$, then $E^0(T) \subseteq E^0(T + R)$.

Proof. Suppose that T has property (m). Since $\sigma(T) = \sigma(T + R)$ holds for every Riesz operator commuting with T, we have
\[
E^0(T) = \sigma(T) \setminus \sigma_{ub}(T) = \sigma(T + R) \setminus \sigma_{ub}(T + R).
\] (2.5)

Let $\lambda \in E^0(T)$ be arbitrary given. Taking into account that $S := T + R$ commutes with R, by Lemma 2.12 we then have
\[
\lambda \in E^0(T) \cap \sigma(T + R) = E^0(S - R) \cap \sigma(S) \subseteq iso\sigma(S) = iso\sigma(T + R).
\]
Moreover, from (2.5) we know that \(T + R - \lambda \in B_+(\mathcal{H}) \) and hence has closed range. Since \(\lambda \in \sigma(T + R) \) it then follows that \(\lambda \) is an eigenvalue, so \(0 < \alpha(T + R - \lambda) < \infty \), i.e., \(\lambda \in E^0(T + R) \). \(\blacksquare \)

Lemma 2.15. Let \(T \in \mathcal{B}(\mathcal{H}) \) be an isoloid operator satisfying property (m). If \(F \) is an operator that commutes with \(T \) and for which there exists a positive integer \(n \) such that \(F^n \) is finite rank, then \(E^0(T) = E^0(T + F) \).

Proof. Observe rst that \(F \) is a Riesz operator, so, by Theorem 2.14, we need only to prove the inclusion \(E^0(T + F) \subseteq E^0(T) \). Let \(\lambda \in E^0(T + F) \). Then \(\lambda \) is an isolated point of \(\sigma(T + F) \), and since \(\alpha(T + F - \lambda) > 0 \) we then have \(\lambda \in \sigma(T + F) = \sigma(T) \). Therefore, by Lemma 2.12, \(\lambda \in E^0(T + F) \cap \sigma(T) \subseteq iso\sigma(T) \). Since \(T \) is isoloid then \(\alpha(T\lambda) = 0 \). We show now that \(\alpha(T - \lambda) < \infty \). Let \(U \) denote the restriction of \((T + F - \lambda)^n \) to \(\ker(T - \lambda) \). Clearly, if \(x \in \ker(T - \lambda) \) then \(Ux = (1)^nF^n\alpha = \mathcal{F}(\mathcal{H}) \), thus \(U \) is a finite rank operator. Moreover, since \(\lambda \in E^0(T + F) \) we have \(\alpha(T + F - \lambda) < \infty \) and hence \(\alpha(U) \leq \alpha(T + F - \lambda)^n < \infty \). By [5, Remark 2.5] it then follows that \(\ker(T - \lambda) \) is finite-dimensional. Therefore, \(\lambda \in E^0(T) \) and consequently \(E^0(T + F) \subseteq E^0(T) \). \(\blacksquare \)

Theorem 2.16. Let \(T \in \mathcal{B}(\mathcal{H}) \) be an isoloid operator satisfying property (m). If \(F \) is an operator that commutes with \(T \) and for which there exists a positive integer \(n \) such that \(F^n \) is finite rank, then \(T + F \) satisfies property (m).

Proof. Since \(F \) is a Riesz operator we have, by [18], \(\sigma_{ub}(T) = \sigma_{ub}(T + F) \), thus \(E^0(T + F) = E^0(T) = \sigma(T) \setminus \sigma_{ub}(T) = \sigma(T + F) \setminus \sigma_{ub}(T + F) \), hence \(T + F \) satisfies property (m). \(\blacksquare \)

Example 2.17. Generally, property (m) is not transmitted from \(T \) to a quasi-nilpotent perturbation \(T + Q \). Let \(Q : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}) \) dened by

\[
Q(x_1, x_2, \cdots) = \left(\frac{x_2}{2}, \frac{x_3}{3}, \cdots \right)
\]

for all \((x_n) \in \ell^2(\mathbb{N}) \).

Then \(Q \) is quasi-nilpotent, so \(\sigma(T) = \sigma_{ub}(T) = \{0\} \) and hence \(\{0\} = E^0(Q) \neq \sigma(Q) \setminus \sigma_{ub}(Q) = \emptyset \). Take \(T = 0 \). Clearly, \(T \) satisfies property (m) but \(T + Q = Q \) fails this property.

Recall that an operator \(T \in \mathcal{B}(\mathcal{H}) \) is nite-isoloid if isolated points of \(\sigma(T) \) are eigenvalues of \(T \) of nite multiplicity.

Theorem 2.18. Suppose that \(T \in \mathcal{B}(\mathcal{H}) \) is a nite-isoloid operator which obeys property (m). If \(R \) is a Riesz operator which commutes with \(T \), then \(T + R \) obeys property (m).

Proof. We show rst that \(E^0(T) = E^0(T + R) \). By Theorem 2.14 it sucès to prove that \(E^0(T + R) \subseteq E^0(T) \). Let \(\lambda \in E^0(T + R) \) be arbitrary given. Then \(\lambda \) is an isolated of \(\sigma(T + R) \) and \(0 < \alpha(T + R - \lambda) < \infty \). Since \(\sigma(T) = \sigma(T + R) \) holds for every Riesz operator commuting with \(T \), we have by Lemma 2.12 that \(\lambda \in E^0(T + R) \cap \sigma(T) \subseteq iso\sigma(T) \). Since \(T \) is nite-isoloid then \(0 < \alpha(T - \lambda) < \infty \)
and so \(\lambda \in E^0(T) \). Therefore, \(E^0(T) = E^0(T + R) \).

As \(T \) obeys property \((m)\) and \(E^0(T) = E^0(T + R) \), we have

\[
E^0(T + R) = E^0(T) = \sigma(T) \setminus \sigma_{ub}(T) = \sigma(T + R) \setminus \sigma_{ub}(T + R).
\]

That is, property \((m)\) holds for \(T + R \). ■

Since every compact operator is a Riesz operator we have:

Corollary 2.19. Let \(T \in \mathcal{B}(\mathcal{X}) \) be a nite-isoloid operator that obeys property \((m)\). If \(K \) is a compact operator commuting with \(T \), then \(T + K \) obeys property \((m)\).

Since every quasi-nilpotent operator is a Riesz operator we have:

Corollary 2.20. Let \(T \in \mathcal{B}(\mathcal{X}) \) be a nite-isoloid operator that obeys property \((m)\). If \(Q \) is a quasi-nilpotent operator commuting with \(T \), then \(T + Q \) obeys property \((m)\).

Theorem 2.21. Suppose that \(T \in \mathcal{B}(\mathcal{X}) \) and \(Q \) an injective quasi-nilpotent operator commuting with \(T \). If \(T \) obeys property \((m)\), then \(T + Q \) obeys property \((m)\).

Proof. As \(T \) obeys property \((m)\), we have

\[
\sigma(T + Q) \setminus \sigma_{ub}(T + Q) = \sigma(T) \setminus \sigma_{ub}(T) = E^0(T).
\]

To show property \((m)\) for \(T + Q \) it suces to prove that

\[
E^0(T + Q) = E^0(T) = 0.
\]

Suppose that \(E^0(T) \neq \emptyset \) and let \(\lambda \in E^0(T) \). From (2.6) we know that \(T - \lambda \in B_{\infty}(\mathcal{X}) \) and hence from [2, Lemma 2.11] it then follows that \(\alpha(T - \lambda) = 0 \), a contradiction.

To show that \(E^0(T + Q) = \emptyset \). Suppose that \(\lambda \in E^0(T + Q) \). Then \(0 < \alpha(T + Q - \lambda) < \infty \), so there exists \(x \neq 0 \) such that \((T + Q - \lambda)x = 0 \). Since \(Q \) commutes with \(T + Q - \lambda \), a similar argument of proof of [2, Lemma 2.11] shows that \(\lambda(T + Q - \lambda) = \infty \), a contradiction. ■

Theorem 2.22. Let \(T \) be an operator on \(\mathcal{X} \) that obeys property \((m)\) and such that \(\sigma_{p}(T) \cap \text{iso}\sigma(T) \subseteq E^0(T) \). If \(Q \) is a quasi-nilpotent operator that commutes with \(T \), then \(T + Q \) obeys property \((m)\).

Proof. As \(T \) obeys property \((m)\), we have by [20, Theorem 2.10] that \(T \) satisfies Weyl’s theorem and \(\sigma_w(T) = \sigma_{ub}(T) \). Hence by [13, Proposition 2.9], we have \(T + Q \) satisfies Weyl’s theorem. Since \(\sigma_{ub}(T + Q) = \sigma_{ub}(T) \) and \(\sigma_{w}(T) = \sigma_{w}(T + Q) \) we have \(\sigma_{ub}(T + Q) = \sigma_{w}(T + Q) \) and so \(T + Q \) obeys property \((m)\). ■

Definition 2.23. A bounded linear operator \(T \) is said to be algebraic if there exists a non-trivial polynomial \(h \) such that \(h(T) = 0 \).

From the spectral mapping theorem it easily follows that the spectrum of an algebraic operator is a nite set. A nilpotent operator is a trivial example of an algebraic operator. Also nite rank operators \(K \) are algebraic; more generally, if \(K^n \) is a nite rank operator for some \(n \in \mathbb{N} \) then \(K \) is algebraic. Clearly, if \(T \) is
algebraic then its dual T^* is algebraic, as well as T' in the case of Hilbert space operators.

A bounded operator $T \in \mathcal{B}(\mathcal{H})$ is said to be polaroid (respectively, a-polaroid) if $\text{iso} \sigma(T) = \emptyset$ or every isolated point of $\sigma(T)$ is a pole of the resolvent of T (respectively, if $\text{iso} \sigma_a(T) = \emptyset$ or every isolated point of $\sigma_a(T)$ is a pole of the resolvent of T).

Theorem 2.24. Suppose that $T \in \mathcal{B}(\mathcal{H})$ and $K \in \mathcal{B}(\mathcal{H})$ is an algebraic operator which commutes with T.

(i) If T^* is hereditarily polaroid and has SVEP, then $T + K$ obeys property (m).

(ii) If T is hereditarily polaroid and has SVEP, then $T^* + K^*$ obeys property (m).

Proof. (i) Obviously, K^* is algebraic and commutes with T^*. Moreover, by [5, Theorem 2.15], we have $T^* + K^*$ is polaroid, or equivalently, $T + K$ is polaroid. Since T^* has SVEP then by [4, Theorem 2.14], we have $T^* + K^*$ has SVEP. Therefore, $T + K$ obeys property (m) by [20, Theorem 3.3 (i)].

(ii) It follows from the proof of Theorem 2.15 of [5] that $T + K$ is polaroid and hence by duality $T^* + K^*$ is polaroid. Since T has SVEP then it follows from [4, Theorem 2.14] that $T + K$ has SVEP. Therefore, $T^* + K^*$ obeys property (m) by [20, Theorem 3.3 (ii)].

Theorem 2.25. Suppose that $T \in \mathcal{B}(\mathcal{H})$ and $K \in \mathcal{B}(\mathcal{H})$ is an algebraic operator which commutes with T.

(i) If T^* is hereditarily polaroid and has SVEP, then $f(T + K)$ obeys property (m) for all $f \in H_{nc}(\sigma(T))$.

(ii) If T is hereditarily polaroid and has SVEP, then $f(T^* + K^*)$ obeys property (m) for all $f \in H_{nc}(\sigma(T))$.

Proof. (i) We conclude from [5, Theorem 2.15] that $T + K$ is polaroid and hence by [6, Lemma 3.11], we have $f(T + K)$ is polaroid and from [4, Theorem 2.14] that $T^* + K^*$ has SVEP. The SVEP of $T^* + K^*$ entails the SVEP for $f(T^* + K^*)$ by [1, Theorem 2.40]. So, $f(T + K)$ obeys property (m) by [20, Theorem 3.3 (i)].

(ii) The proof of part (ii) is analogous.

References

Department of Mathematics & Statistics, Faculty of Science P.O.Box(7), Mu’tah University, Jordan
E-mail address: malik_okasha@yahoo.com