KUMMER EXTENSIONS AND PÔLYA FIELDS

GÉRARD KIENTEGA¹, THÉODORE TAPSOBA², CHARLES WEND-WAOGA TOUGMA³∗

ABSTRACT. A number field is called a Pólya field if the module of integer-valued polynomials over its ring of integers has a regular basis. Let \(a \in \mathbb{Z}, a \neq 0 \) and \(p \geq 3 \) be a prime number. In this paper, we characterize the number fields of the form \(\mathbb{Q}(\zeta_p, p\sqrt{a}) \) which are Pólya fields. We hence generalize results of [9]. New bounds for the number of ramified prime numbers in these fields are derived.

1. Introduction

1.1. Notations. Throughout this paper, if \(K \) is a number field, \(\mathbb{Z}_K \) is its ring of integers, \(U_K \) its units group and \(\mathcal{I}_K \) its group of fractional ideals. We denote by \(h_K \) the class number of \(K \). Let \(q \) be a prime number. \(\Pi_q(K) \) is the product of all maximal (prime) ideals of \(K \) with norm \(q^f, f \in \mathbb{N} \). If \(q^f \) is not a norm of an ideal, then \(\Pi_q(K) = \mathbb{Z}_K \). Finally, by \((r,s) \) we mean the gcd of \(r \) and \(s \) with \(r,s \in \mathbb{Z} \). The same notation will be used for ideals. We note also \(r \mid s \) when \(r \) divides \(s \).

1.2. A result of Amandine Leriche. In the 1910’s, Pólya [11] and Ostrowski [10] had introduced the ring of integers valued polynomials on the ring \(\mathbb{Z}_K \) of integers of the number field \(K \):
\[
\text{Int}(\mathbb{Z}_K) = \{ P \in K[X], P(\mathbb{Z}_K) \subset \mathbb{Z}_K \}
\]
Pólya was interested by number fields \(K \) whose \(\mathbb{Z}_K \)-module \(\text{Int}(\mathbb{Z}_K) \) has a regular basis \((f_n)_{n} \), which means that \((f_n)_{n} \) is a basis of \(\text{Int}(\mathbb{Z}_K) \) such that \(\deg(f_n) = n \), for all \(n \in \mathbb{N} \). For each \(n \in \mathbb{N} \), the leading coefficients of the polynomials in \(\text{Int}(\mathbb{Z}_K) \) of degree \(n \) together with \(0 \) form a fractional ideal denoted by \(\mathfrak{J}_n(K) \). Pólya proved that \(K \) has the above propriety if and only if \(\mathfrak{J}_n(K) \) is a principal ideal for each \(n \in \mathbb{N} \). Ostrowski showed just after Pólya that this propriety is satisfied if and only if the ideals \(\Pi_{q^f}, f \in \mathbb{N} \) are principal.
It is Zantema that in 1982, called these fields Pólya fields. In his 1982’s work [15], he gave a cohomological interpretation of Pólya fields that are Galois extension of \(\mathbb{Q} \) and showed that all cyclotomic fields are Pólya fields.
After Zantema’s results on cyclotomic fields, Kummer extensions seem like a
natural choice. In [9] and [8], Leriche gave a description of Pólya fields of the form $\mathbb{Q}(j, \sqrt{a})$ in terms of the subfield $\mathbb{Q}(\sqrt{a})$:

Theorem 1.1 ([9], Theorem 6.2 or [8], Prop 3.7.). Let $a = bc^2$ where a is an integer ≥ 2, b and c square free and coprime. Let $M = \mathbb{Q}(j, \sqrt{a})$, $L = \mathbb{Q}(j)$ and $K = \mathbb{Q}(\sqrt{a})$. The field M is a Pólya field if and only if:

- when $b^2 \not\equiv c^2 \mod 9$, for each prime q dividing $3a$, there is an element $\omega \in K$ such that $N_{K/\mathbb{Q}}(\omega) = \pm q$
- when $b^2 \equiv c^2 \mod 9$, for each prime q dividing a, there is an element $\omega \in K$ such that $N_{K/\mathbb{Q}}(\omega) = \pm q$.

Corollary 1.2 ([9], Corollary 6.6 or [8], Cr. 3.10.). Let q be a prime number. The field $\mathbb{Q}(j, \sqrt{q})$ is a Pólya field if and only if:

- either $q^2 \equiv 1 \mod 9$
- or there is an integer of $\mathbb{Q}(\sqrt{q})$ with norm ± 3.

In this paper, we propose to generalize these results of Leriche to the fields $\mathbb{Q}(\zeta_p, \sqrt{a})$, $p \geq 3$, $a \in \mathbb{Z}$. We also improve the bounds of the ramified numbers in these fields and we apply them to refine Theorem 1.1.

2. Preliminaries

Let K/F be an extension of number fields. If \mathfrak{q} is a maximal ideal of \mathbb{Z}_F and \mathfrak{O} is a maximal ideal of K lying over \mathfrak{q}, we denote by $e(\mathfrak{O}/\mathfrak{q})$ and $f(\mathfrak{O}/\mathfrak{q})$ the ramification index and the residue degree of \mathfrak{O} over \mathfrak{q}. If $I \in \mathcal{I}_K \cap \mathbb{Z}_K$, $\text{Rac}(I)$ is the product of all prime ideals of K dividing I.

Suppose now that F, K, L and M are number fields such that $F = K \cap L$ and $M = KL$. Let \mathfrak{q}, \mathfrak{O}, \mathfrak{P} and \mathfrak{M} be respectively prime ideals of F, K, L and M such that $\mathfrak{M} \cap K = \mathfrak{O}$, $\mathfrak{M} \cap L = \mathfrak{P}$, $\mathfrak{M} \cap F = \mathfrak{q}$ and $\mathfrak{M} \cap \mathbb{Q} = q\mathbb{Z}$.

\[
\begin{array}{ccc}
\mathfrak{O} & \longrightarrow & M = KL \\
\downarrow & & \downarrow \\
K & \longrightarrow & L \\
\downarrow & & \downarrow \\
F & \longrightarrow & \mathfrak{q} \\
\downarrow & & \downarrow \\
\mathbb{Q} & \longrightarrow & q\mathbb{Z}
\end{array}
\]

(2.1)

Recall that $\mathcal{N}_{M/K}(\mathfrak{M}) = \mathfrak{O}^{(\mathfrak{M}/\mathfrak{O})}$ is the relative norm of \mathfrak{M} over K. If $I \in \mathcal{I}_M$ then

\[
I = \prod_i \mathfrak{M}_i^{e_i}
\]

with $e_i \in \mathbb{Z}$ and \mathfrak{M}_i prime ideals of M. As \mathcal{I}_M is a multiplicative group generated by the prime ideals of M, if $\mathfrak{O}_i = \mathfrak{M}_i \cap K$ and $f_i = f(\mathfrak{M}_i/\mathfrak{O}_i)$ then

\[
\mathcal{N}_{M/K}(I) = \prod_i \mathfrak{O}_i^{e_if_i}
\]
Lemma 2.1. With the above notations,

1) \(e(M/q) \) is divisible by the least common multiple of \(e(\Omega/q) \) and \(e(\mathfrak{P}/q) \)
2) If \(K/Q \) or \(L/Q \) is galoisian, then \(e(M/q) \) divides \(e(\Omega/q) e(\mathfrak{P}/q) \)
3) If \(K/Q \) or \(L/Q \) is galoisian and if \((e(\Omega/q), e(\mathfrak{P}/q)) = 1 \) then \(e(M/q) = e(\Omega/q) e(\mathfrak{P}/q) \)

Proof. See [8], Lemma 2.19, p.41.

Lemma 2.2. If \(M/Q \) is galoisian, then the following assertions are equivalent:

1) \(M \) is a Pólya field
2) For each prime number \(q \) and for each \(f \in \mathbb{N} \), \(\Pi_q f(M) \) is a principal ideal.
3) For each ramified prime number \(q \) and for each \(f \in \mathbb{N} \), \(\Pi_q f(M) \) is a principal ideal.
4) For each ramified prime number \(q \), \(\text{Rac}(q\mathbb{Z}_M) \) is a principal ideal.
5) For each ramified prime number \(q \), \(\text{Rac}(q\mathbb{Z}_M) \) is a principal ideal.

Proof. 1) \(\iff \) 2) is Ostrowski’s result\(^1\). Other equivalences are Ostrowski’s results in the galoisian case. Indeed, in a galoisian extension, all prime ideals lying over \(q \) have the same residue degree \(f = f(q) \). Hence \(\text{Rac}(q\mathbb{Z}_M) = \Pi_q f(M) \). This shows that assertions 2) and 4) are equivalent. If \(q \) is not ramified in \(M \), then \(\text{Rac}(q\mathbb{Z}_M) = \Pi_q f(M) = q\mathbb{Z}_M \) and hence \(\text{Rac}(q\mathbb{Z}_M) \) is a principal ideal showing that assertions 2), 3) and 5) are equivalent.

Remark 2.3. If \(M/Q \) is not galoisian, Lemma 2.2 is not necessary true.

From now on, throughout the paper \(p \geq 3 \) and \(q \geq 2 \) will be prime numbers; \(a > 1 \) a \(p \)-th power free integer, \(\zeta_p \) a \(p \)-th primitive root of unit, \(L = \mathbb{Q}(\zeta_p) \). The polynomial \(X^p - a \) has a unique real root. We denote this root by \(\sqrt[p]{a} \). We set \(K = \mathbb{Q}(\sqrt[p]{a}) \) and \(M = KL = \mathbb{Q}(\zeta_p, \sqrt[p]{a}) \) as in the following diagram

\[
\begin{array}{c}
K = \mathbb{Q}(\sqrt[p]{a}) \\
\mathbb{Q} \\
M = \mathbb{Q}(\zeta_p, \sqrt[p]{a}) \\
L = \mathbb{Q}(\zeta_p)
\end{array}
\]

Lemma 2.4. \(p \) is totally ramified in \(L \):

\[p\mathbb{Z}_L = (1 - \zeta_p)^{p-1}\mathbb{Z}_L. \]

Proof. See [1], Lemma 3, p.87

It is well known that \(p \) is the only ramified prime number in \(L \) (see [12], p.90). The ramified prime numbers in \(K \) are those that divide \(pa \). Westlund’s following Theorem [14] gives their decomposition in \(K \).

\(^1\)See Introduction
Theorem 2.5 (Westlund). The integer a may be expressed in one way only in the form $a = a_1a_2^2 \ldots a_{p-1}^{p-1}$ where $a_1, a_2, \ldots, a_{p-1}$ are relatively prime and are not divisible by the square of a prime number. Let $b = a_1a_2^2 \ldots a_{p-2}^{p-2} = \frac{a}{a_{p-1}^{p-1}}$ and $d = b^{p-1} - a_{p-1}^{p-1}$. Then

1) $qZ_K = \Omega^p$ if q is a prime number such that $q \mid a$

2) If $(p, a) = 1$ then
 - $pZ_K = \Omega^p$ if $d \neq 0 \mod p^2$
 - $pZ_K = \Omega_1^{p-1} \Omega_2$ if $d \equiv 0 \mod p^2$.

Proof. [14], p.389-391.

Lemma 2.6. With the notations of the previous Theorem, the following assertions are equivalent.

1) $d \equiv 0 \mod p^2$
2) $a^{p-1} \equiv 1 \mod p^2$

Proof.
1) \Rightarrow 2): $d \equiv 0 \mod p^2 \Rightarrow b^{p-1} - a_{p-1}^{p-1} \equiv 0 \mod p^2$. It is clear that $a_{p-1}^{p-1} \equiv 0 \mod p^2 \Rightarrow p \mid a_{p-1}$ since p is an odd prime. Thus if we suppose that $a_{p-1}^{p-1} \equiv 0 \mod p^2$ then $p \nmid b$ since $a_1, a_2, \ldots, a_{p-1}$ are relatively primes. $(a_{p-1}^{p-1} \equiv 0 \mod p^2$ and $p \nmid b) \Rightarrow d = b^{p-1} - a_{p-1}^{p-1} \not\equiv 0 \mod p^2$ and this contradicts our hypothesis. So, we may assume that $a_{p-1}^{p-1} \not\equiv 0 \mod p^2$.

$d \equiv 0 \mod p^2 \Leftrightarrow a_{p-1}^{p-1} - a_{p-1}^{p(p-1)} \equiv 0 \mod p^2$ since the multiplicative group of $\mathbb{Z}/p^2\mathbb{Z}$ has order $p(p-1)$.

2) \Rightarrow 1): We have $a_{p-1}^{p-1} \equiv 0 \mod p^2$ (this is equivalent to $p \nmid a_{p-1}$). In fact if $a_{p-1}^{p-1} \equiv 0 \mod p^2$ then $a \equiv 0 \mod p^2$ because a_{p-1}^{p-1} divides a: which is absurd since by hypothesis $a_{p-1}^{p-1} \equiv 1 \mod p^2$. First, one has $d = b^{p-1} - a_{p-1}^{p-1} = \frac{a_{p-1}^{p-1}}{a_{p-1}^{(p-1)^2}}$.

Corollary 2.7. Under the hypothesis of Theorem 1.1, the following assertions are equivalent:

1) $b^2 \equiv c^2 \mod 9$
2) $a^2 \equiv 1 \mod 9$

Westlund[14] also found an integral basis of $K = \mathbb{Q}(\sqrt{a})$.
Theorem 2.8 (Westlund). Let $\alpha_i = \sqrt[p]{\beta_i}$ where β_i is the p-th power free part of a^i.
Let b and d be as in the Theorem 2.5 and $\gamma = \frac{\alpha_1^{p-1} + \alpha_1^{p-2}b + \cdots + \alpha_1b^{p-2} + 1}{p}$.

An integral basis of K is
1) $(1, \alpha_1, \ldots, \alpha_{p-1})$ if $d \not\equiv 0 \pmod{p^2}$
2) $(\gamma, \alpha_1, \ldots, \alpha_{p-1})$ if $d \equiv 0 \pmod{p^2}$

Theorem 2.9 (Hilbert). Let $\mu \in L$ such that $X^p - \mu$ is irreducible over L. Assume that \mathfrak{P} is a prime ideal of L such that $\mathfrak{P} \mid p\mathbb{Z}_L$ and $(\mu, \mathfrak{P}) = 1$. Then in M,
1) \mathfrak{P} splits completely into p factors, $\mathfrak{P}\mathbb{Z}_M = \mathfrak{M}_1 \cdots \mathfrak{M}_p$ iff $\mu \equiv \xi^p \pmod{\mathfrak{P}^{p+1}}$
2) \mathfrak{P} remains prime: $\mathfrak{P}\mathbb{Z}_M = \mathfrak{M}$ iff $\mu \not\equiv \xi^p \pmod{\mathfrak{P}^{p+1}}$ and $\mu \equiv \xi^p \pmod{\mathfrak{P}^p}$
3) \mathfrak{P} becomes the p-th power of a prime ideal: $\mathfrak{P}\mathbb{Z}_M = \mathfrak{M}^p$ iff $\mu \not\equiv \xi^p \pmod{\mathfrak{P}^p}$

Proof. [13], Theorem 1.1, p.589.

Theorem 2.10. If $q\mathbb{Z}_K = \Omega^p$ then the following assertions are equivalent:
1) $\Omega = \text{Rac}(q\mathbb{Z}_K)$ is a principal ideal
2) $\text{Rac}(q\mathbb{Z}_M)$ is a principal ideal.

Proof. 1) \implies 2): i) $q \not\equiv p$: q is not ramified in \mathbb{Z}_L since p is the only ramified prime number in L. Hence by Lemma 2.1, Ω is not ramified in \mathbb{Z}_M. So we have $\text{Rac}(q\mathbb{Z}_M) = \text{Rac}(\Omega\mathbb{Z}_M) = \Omega\mathbb{Z}_M$. Thus if Ω is a principal ideal then $\text{Rac}(q\mathbb{Z}_M)$ is a principal ideal.

ii) $q = p$: By Lemma 2.4, $p\mathbb{Z}_L = (1 - \zeta_p)^{p-1}\mathbb{Z}_L$. Lemma 2.1, shows that there exists a prime ideal \mathfrak{M} of \mathbb{Z}_M such that $p\mathbb{Z}_M = \mathfrak{M}^{p^{p-1}}$. Hence we have $\text{Rac}(p\mathbb{Z}_M) = \mathfrak{M}$. It follows that $\Omega\mathbb{Z}_M = \mathfrak{M}^{p-1}$ and $(1 - \zeta_p)\mathbb{Z}_M = \mathfrak{M}^p$. So \mathfrak{M}^{p-1} and \mathfrak{M}^p are principal ideals. As $\mathfrak{M} = \mathfrak{M}^{p^{p-1}}$ then \mathfrak{M} is a principal ideal.

2) \implies 1): M/K is galoisian since M/Q is galoisian. Thus $\Omega\mathbb{Z}_M = (\mathfrak{M}_1 \cdots \mathfrak{M}_r)^e$ with $ref = [M : K] = (p - 1)$. Hence: $\Omega^{p-1} = \Omega^{ref} = N_{M/K}(\Omega\mathbb{Z}_M) = N_{M/K}((\text{Rac}(q\mathbb{Z}_M))^e) = N_{M/K}((\text{Rac}(q\mathbb{Z}_M))^e)\mathbb{Z}_K$. Thus Ω^{p-1} is a principal ideal because the relative norm of a principal ideal is a principal ideal. Since by hypothesis, Ω^p is a principal ideal, then $\Omega = \Omega^p (\Omega^{p-1})^{-1}$ is a principal ideal.

3. POLYA fields of the form $\mathbb{Q}(\zeta_p, \sqrt[p]{a})$

With the notations of the previous sections, the following result generalizes Theorem 1.1. Recall that $M = \mathbb{Q}(\zeta_p, \sqrt[p]{a})$ and $K = \mathbb{Q}(\sqrt[p]{a})$.

Theorem 3.1. M is a Pólya field if and only if:

- when $a^{p-1} \not\equiv 1 \pmod{p^2}$, for each prime q dividing pa, there is an algebraic integer $\omega \in K$ such that $N_{K/\mathbb{Q}}(\omega) = q$.
- when $a^{p-1} \equiv 1 \pmod{p^2}$, for each prime q dividing a, there is an algebraic integer $\omega \in K$ such that $N_{K/\mathbb{Q}}(\omega) = q$.

Proof. We look at diagram 2.2: the ramified prime numbers in M are those dividing pa. Indeed by Lemma 2.1, q is ramified in M iff it is ramified at least in
one of the extensions \(L \) or \(K \), thus \(q \) is ramified in \(M \) if and only if it is ramified in \(K \) since \(p \) is ramified in \(K \) and is the only ramified prime number in \(L \).

By Lemma 2.2, \(M \) is a Polya field iff for each ramified prime number \(q \), \(\text{Rac}(q\mathbb{Z}_M) \) is a principal ideal. By Theorem 2.5 and Lemma 2.6,

i) if \(a^{p-1} \not\equiv 1 \pmod{p^2} \) and \(q \mid pa \) then \(q\mathbb{Z}_K = \mathcal{O}_p \)

ii) if \(a^{p-1} \equiv 1 \pmod{p^2} \) then

\[
q\mathbb{Z}_K = \mathcal{O}_p \text{ if } q \mid a, \; q \not\equiv p \\
P\mathbb{Z}_K = \mathcal{O}_p^{1-\delta} \mathcal{O}_2.
\]

In case i), Theorem 2.10 implies that \(\mathcal{O} = \text{Rac}(q\mathbb{Z}_K) \) is a principal ideal if \(q \mid pa \). Hence there exists \(\omega \in \mathbb{Z}_K \) such that \(\mathcal{O} = \omega\mathbb{Z}_K \). Taking norm, it is equivalent to \(N_{K/Q}(\omega) = \pm q \). If \(N_{K/Q}(\omega) = -q \), one takes \(\omega' = -\omega \) and we then have \(N_{K/Q}(\omega') = q \) since \(p \) is odd.

In case ii), the previous approach is valid for all prime numbers \(q \) dividing \(a \). Now, look what happens to \(\text{Rac}(q\mathbb{Z}_K) \).

By Theorem 2.5, \(P\mathbb{Z}_K = \mathcal{O}_p^{1-\delta} \mathcal{O}_2 \). On the other hand, \(P\mathbb{Z}_L = (1 - \zeta_p)^{p-1}\mathbb{Z}_L \) by Lemma 2.4. Only the decomposition 1) of Theorem 2.9 must hold. Indeed, since \(P\mathbb{Z}_L = (1 - \zeta_p)^{p-1}\mathbb{Z}_L \), it suffices to factorize \((1 - \zeta_p)\mathbb{Z}_L \) in \(M \). We have \(a^{p-1} \equiv 1 \pmod{p^2} \) hence \((p, a) = 1 \). Thus \(((1 - \zeta_p)\mathbb{Z}_L, a\mathbb{Z}_L) = 1 \) since \((1 - \zeta_p)\mathbb{Z}_L \) divides \(P\mathbb{Z}_L \). So we can apply Theorem 2.9. In decomposition 2) and 3) of this Theorem, there is only one prime ideal of \(M \) lying over \((1 - \zeta_p)\mathbb{Z}_L \) thus only one prime ideal of \(M \) lying over \(p \): this is impossible since by Theorem 2.5, there are already two primes ideals lying over \(p \) in \(K \subset M \). Hence it remains only the decomposition 1) of Theorem 2.9: \((1 - \zeta_p)\mathbb{Z}_L \) splits completely in \(M \) and thus \(\text{Rac}(P\mathbb{Z}_M) = \text{Rac}((1 - \zeta_p)\mathbb{Z}_M) = (1 - \zeta_p)\mathbb{Z}_M \). \(\square \)

Remark 3.2. Lerche’s result (Theorem 1.1) deals with \(\omega \in K \) but her proof shows clearly that \(\omega \) must be an algebraic integer. We obtain this Theorem by taking \(p = 3 \) and \(a = bc^2 \). It follows from Corollary 2.7, that the assertions \(a^2 \equiv 1 \pmod{9} \) and \(b^2 \equiv c^2 \pmod{9} \) are equivalent.

It is well known that the norm form equation \(N_{K/Q}(\omega) = q \) in our previous Theorem is difficult to solve in general. Our following result gives simple necessary conditions for \(M \) to be a Polya field based only on congruence relations. Before, define the radical of \(a \) to be

\[
r(a) = \prod_{p\mid a} p
\]

ie, the product of all the prime numbers dividing \(a \), taken with multiplicity 1 (see [7], p.196).

Corollary 3.3. If \(M = \mathbb{Q}(\zeta_p, \sqrt[3]{a}) \) is a Polya field then:

- when \(a^{p-1} \not\equiv 1 \pmod{p^2} \), for each prime number \(q \) dividing \(pa \), we have \(q \equiv u^p \pmod{p^2} \) for each prime number \(q \) dividing \(a \), we have \(q \equiv u \pmod{p} \) with \(u \in \mathbb{Z} \)

Proof. Let \(\omega \in \mathbb{Z}_K \). By Theorem 2.8, we have:

- \(\omega = x_0 + x_1\alpha_1 + \cdots + x_{p-1}\alpha_{p-1} \) where \(x_i \in \mathbb{Z} \) if \(a^{p-1} \not\equiv 1 \pmod{p^2} \) (\(\Leftrightarrow d \neq 0 \pmod{p^2} \) by Lemma 2.6)
The converse is false, i.e.

\[\omega = x_0 \gamma + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1} \] where \(x_i \in \mathbb{Z} \) if \(a^{p-1} \equiv 1 \mod p^2 \).

Thus:

- \(\omega - x_0 = x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1} \) if \(a^{p-1} \not\equiv 1 \mod p^2 \)
- \(p\omega - x_0 = x_0 (a^{p-1} + b \alpha_1^{p-2} + \cdots + b^{p-2} \alpha_1) + p(x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}) \) if \(a^{p-1} \equiv 1 \mod p^2 \)

If \(\sigma \) is an embedding of \(K \) in \(\mathbb{C} \) then

\[\sigma(\alpha_i) = \sigma(\sqrt[p]{\beta_i}) = \zeta_p^i \sqrt[p]{\beta_i} \quad (K = \mathbb{Q}(\sqrt[p]{a}) = \mathbb{Q}(\sqrt[p]{\beta_i})). \]

Thus let:

- \(\theta = \omega \) if \(a^{p-1} \not\equiv 1 \mod p^2 \)
- \(\theta = p\omega \) if \(a^{p-1} \equiv 1 \mod p^2 \)

Then:

\[N_{K/Q}(\theta) = x_0^p + r(a)z \quad \text{with} \quad z \in \mathbb{Z} \]

Indeed, we have:

\[N_{K/Q}(\theta) - x_0^p \in (\alpha_1, \cdots, \alpha_{p-1}) \mathbb{Z}_M = \left(\sqrt[p]{\beta_1}, \cdots, \sqrt[p]{\beta_{p-1}} \right) \mathbb{Z}_M \]

As \(N_{K/Q}(\theta) - x_0^p \in \mathbb{Z} \) and \((\sqrt[p]{\beta_i}) \mathbb{Z}_M \cap \mathbb{Z} = \beta_i \mathbb{Z} \) then

\[N_{K/Q}(\theta) - x_0^p \in (\beta_1, \cdots, \beta_{p-1}) \mathbb{Z} \]

By definition of \(\beta_i \), it follows that \(r(a) \mid \beta_i \) for all \(i \). Hence we have:

\[N_{K/Q}(\theta) - x_0^p \in r(a)\mathbb{Z} \]

- \(N_{K/Q}(\theta) = N_{K/Q}(\omega) \) if \(a^{p-1} \not\equiv 1 \mod p^2 \)
- \(N_{K/Q}(\theta) = p^u N_{K/Q}(\omega) \) if \(a^{p-1} \equiv 1 \mod p^2 \)

If \(a^{p-1} \equiv 1 \mod p^2 \) then \(p \nmid a \), so \(p^u \) is invertible modulo \(r(a) \). Thus

\[N_{K/Q}(\omega) - u^p \mod r(a) \quad \text{with} \quad u \in \mathbb{Z} \]

The corollary now follows from Theorem 3.1.

Remark 3.4. The necessary conditions of Corollary 3.3 holds if \(K \) is a Pólya field since if \(K \) is a Pólya field then \(M \) is also a Pólya field. Indeed, it follows from Theorem 2.5 that \(\Pi_q(K) = \text{Rac}(q \mathbb{Z}_K) \) if \(q \mid p^2 \). Thus by Ostrowski’s result, \(\text{Rac}(q \mathbb{Z}_K) \) must be a principal ideal if \(q \mid p^2 \) since \(K \) is a Pólya field. The proof of the Theorem 3.1 shows that if \(a^{p-1} \not\equiv 1 \mod p^2 \) and \(q \mid p^2 \) then the assertions \((\text{Rac}(q \mathbb{Z}_K) \) is a principal ideal) and \(\text{there is } \omega \in \mathbb{Z}_K \text{ such that } N_{K/Q}(\omega) = q \) are equivalent.

*The converse is false, i.e \(M \) must be a Pólya field whithout \(K \): let \(K = \mathbb{Q}(\sqrt[p]{\Pi}) \) and \(M = \mathbb{Q}(j, \sqrt[p]{\Pi}) \). We have \(11^2 \not\equiv 1 \mod 9, N_{K/Q}(\sqrt[p]{\Pi}) = 11 \), and \(N_{K/Q}(\sqrt[p]{\Pi}) = 11 \) and \(N_{K/Q}(\sqrt[p]{\Pi}) = 3 \). Thus, by Theorem 3.1, \(M \) is a Pólya field. According to Zantema, \(K \) is a Pólya field iff \(h_K = 1 \) since \(K \) is a \(S_3 \)-field (see [15], Theorem 1.1). But table from [6] shows that \(h_K = 2 \).

Corollary 3.5. If \(\mathbb{Q}(\zeta_p, \sqrt[p]{q}) \) is a Pólya field then:

- either \(q^{p-1} \equiv 1 \mod p^2 \)
- or \(p \equiv u^p \mod q \) with \(u \in \mathbb{Z} \)

Proof. A direct application of the previous Corollary on \(\mathbb{Q}(\zeta_p, \sqrt[p]{q}) \).
We now give some sufficient conditions for M to be a Pólya field.

Corollary 3.6. If $p \nmid h_K$ then M is Pólya field.

Proof. For each case of Theorem 3.1, we have $q\mathbb{Z}_K = Q^p$ by Theorem 2.6 and hence $N_{K/Q}(\omega) = q \iff \omega\mathbb{Z}_K = \Omega$. So it is enough to prove that Ω is a principal ideal. Q^p is a principal ideal since $Q^p = q\mathbb{Z}_K$. On the other hand Q^{hk} is a principal ideal. Since $p \nmid h_K$ then by Bezout’s Theorem, there exits $u,v \in \mathbb{Z}$ such that $up + vh_K = 1$. Thus $\Omega = (Q^p)^u \times (Q^{hk})^v$ is a principal ideal. \square

Corollary 3.7. Let $K = \mathbb{Q}(\sqrt{a})$. Then $M = \mathbb{Q}(\zeta_p, \sqrt{a})$ is a Pólya field if and only if:

- either $q^{p-1} \equiv 1 \mod p^2$
- or there exists $\omega \in \mathbb{Z}_K$ such that $N_{K/Q}(\omega) = p$.

In particular, $\mathbb{Q}(\zeta_p, \sqrt{p})$ is a Pólya field since $N_{K/Q}(\sqrt{p}) = p$.

Proof. Recall that $p \geq 3$ and $q \geq 2$ are prime numbers. Take $a = q$. Then q is the only prime dividing a. By Theorem 3.1, $M = \mathbb{Q}(\zeta_p, \sqrt{a})$ is a Pólya field if and only if one of the following assertion is satisfied:

- $q^{p-1} \equiv 1 \mod p^2$ and there exists $\omega \in \mathbb{Z}_K$ such that $N_{K/Q}(\omega) = q$.
- $q^{p-1} \not\equiv 1 \mod p^2$ and there exists $\omega, \omega' \in \mathbb{Z}_K$ such that $N_{K/Q}(\omega) = q$ and $N_{K/Q}(\omega') = p$.

Since $\sqrt{a} \in K$ and $N_{K/Q}(\sqrt{a}) = q$, the two above assertions are equivalent to those of the Corollary 3.7. \square

Example 3.8. Let n be a positive integer and p a prime number such that $p \mid n$. If $n^2 + 1$ is a prime number then $\mathbb{Q}(\zeta_p, \sqrt{n^2 + 1})$ is a Pólya field. Indeed we have $q = n^2 + 1 \equiv 1 \mod n^2 \equiv 1 \equiv 1 \mod p^2$ so $q^{p-1} \equiv 1 \mod p^2$.

Recall that p is a Wieferich’s prime number if and only if

$$2^{p-1} \equiv 1 \mod p^2$$

If p is a Wieferich’s prime number then $\mathbb{Q}(\zeta_p, \sqrt{2})$ is a Pólya field. It is enough to take $q = 2$ in Corollary 3.7.

4. **Ramification in the Pólya fields $K = \mathbb{Q}(\sqrt{a})$ and $M = \mathbb{Q}(\zeta_p, \sqrt{a})$**

Recall that the ramified prime numbers in M are those dividing pa. With the notations of the previous section, we have the following result.

Theorem 4.1. If M is a Pólya field, let n_M be the number of ramified prime numbers in M. Then $n_M \leq \frac{p-1}{2} + 2$. Precisely let n_a be the number of prime divisors of a. Then

- $n_a \leq \frac{p-1}{2} + 1$ if $a^{p-1} \equiv 1 \mod p^2$ or $p \mid a$
- $n_a \leq \frac{p-1}{2}$ if $a^{p-1} \not\equiv 1 \mod p^2$ and $p \nmid a$
Remark 4.2. By Remark 3.4, necessary conditions of the previous Theorem holds if we replace M by K.

General upperbounds exist for n_M in [8] and [15]. By Corollary 2.43 of [8], we have $n_M \leq p - 1 + \frac{p(p-1)}{2} + cp$ with $c_p \geq 0$. It follows from Proposition 5.5 of [15] that $n_M \leq p$. Therefore Theorem 4.1 is sharper than these bounds.

To prove Theorem 4.1, we need some lemmas.

Lemma 4.3. The following are equivalent:

1) $\beta \notin \mathbb{Q}_p$
2) $X^p - \beta$ is irreductible in \mathbb{Q}.
3) $X^p - \beta$ has no roots in \mathbb{Q}.

Proof. See [7], Theorem 9.1, p.297. □

Lemma 4.4. Let $Tor(K^*/\mathbb{Q}^*) = \{x\mathbb{Q}^*, \exists n \in \mathbb{N}^*, x^n \in \mathbb{Q}\}$. Then

$Tor(K^*/\mathbb{Q}^*) = \{1\mathbb{Q}^*, \sqrt[p]{a}\mathbb{Q}^*, \cdots, (\sqrt[p]{a})^{p-1}\mathbb{Q}^*\}$

Corollary 4.5. Let $b, c \in \mathbb{Q}$. Then $\mathbb{Q}(\sqrt[p]{b}) = \mathbb{Q}(\sqrt[p]{c})$ if and only if $c = b^\alpha u^p$ with $u \in \mathbb{Q}$ and $0 \leq \alpha \leq p - 1$.

Proof. $\mathbb{Q}(\sqrt[p]{b}) = \mathbb{Q}(\sqrt[p]{c}) \Rightarrow Tor(\mathbb{Q}(\sqrt[p]{b})^*/\mathbb{Q}) = Tor(\mathbb{Q}(\sqrt[p]{c})^*/\mathbb{Q})$. Hence by Lemma 4.4, $\sqrt[p]{c} = \left(\sqrt[p]{b}\right)^\alpha u$ with $0 \leq \alpha \leq p - 1$ and $u \in \mathbb{Q}$ ie $c = b^\alpha u^p$. The converse is obvious. □

Lemma 4.6. Let q be a prime number. If $q\mathbb{Z}_K = \mathbb{Q}_p$ then there is an equivalence between the following assertions:

1) There is $\omega \in \mathbb{Z}_K$ such that $N_{K/\mathbb{Q}}(\omega) = q$
2) There is $\varepsilon \in U_K$ such that the equation $\omega^p = \varepsilon N_{K/\mathbb{Q}}(\omega)$ has a solution $\omega \in \mathbb{Z}_K$ with $N_{K/\mathbb{Q}}(\omega) = q$

Proof. 1) \Rightarrow 2): $N_{K/\mathbb{Q}}(\omega \mathbb{Z}_K) = q$. Hence $\omega \mathbb{Z}_K$ is a prime ideal lying over q. Thus $\omega \mathbb{Z}_K = \mathbb{Q}$ since \mathbb{Q} is the only prime ideal over q in K. We then have $\omega^p \mathbb{Z}_K = q\mathbb{Z}_K$ and hence there is $\varepsilon \in U_K$ such that $\omega^p = \varepsilon q$.

2) \Rightarrow 1) is trivial. □

Proof of Theorem 4.1. Let r be the number of fundamentals units in K. By Dirichlet's units Theorem, $U_K = \{\pm 1\} \times V_K$ where V_K is a free \mathbb{Z}-module of rank r since the only roots of units in K are ± 1. Suppose M is a Pòlya. Let s be the number of totally ramified prime numbers q_i in K ie $q_i\mathbb{Z}_K = \mathbb{Q}_p$. We will show that $s \leq r + 1$. Suppose $s \geq r + 2$. It follows from Theorem 3.1 and Lemma 4.6
that there are (at least) \(r + 2 \) elements \(\omega_i \in \mathbb{Z}_K \) and \(\varepsilon_i \in V_K^2 \) such that

\[
\begin{align*}
\omega_1^p &= \varepsilon_1 q_1 \\
\vdots & \quad \vdots \\
\omega_r^p &= \varepsilon_r q_r \\
\omega_{r+1}^p &= \varepsilon_{r+1} q_{r+1} \\
\omega_{r+2}^p &= \varepsilon_{r+2} q_{r+2}
\end{align*}
\] (4.1)

Let us first consider \(r \) and \(r + 1 \). Since the rank of the \(\mathbb{Z} \)-module \(V_K \) is \(r \) then there exist \(k_1, \ldots, k_r, k_{r+1} \in \mathbb{Z} \) such that

\[
\varepsilon_1^{k_1} \times \cdots \times \varepsilon_r^{k_r} \times \varepsilon_{r+1}^{k_{r+1}} = 1
\] (4.2)

There exists \(\ell \in \{1, \ldots, r, r + 1\} \) such that \(p \mid k_\ell \) even if we need to replace \(k_i, \ i \in \{1, \ldots, r, r + 1\} \) by \(k_i' = \frac{k_i}{p^\alpha} \) with \(\alpha = v_p(\gcd(k_1, \ldots, k_r, k_{r+1})) \). Indeed \(k_i' \in \mathbb{Z} \) and \(p \nmid \gcd(k_1', \ldots, k_r', k_{r+1}') \) since \(p^\alpha \) is the most power of \(p \) that divides \(\gcd(k_1, \ldots, k_r, k_{r+1}) \). From (4.2), we have

\[
\left(\varepsilon_1^{k_1} \times \cdots \times \varepsilon_r^{k_r} \times \varepsilon_{r+1}^{k_{r+1}} \right)^{\frac{1}{p^\alpha}} = \sqrt[p^\alpha]{1}. But 1 is the only \(p^{\alpha} \)-root of unit in \(K \) since \(p \) is odd. So \(\varepsilon_1^{k_1} \times \cdots \times \varepsilon_r^{k_r} \times \varepsilon_{r+1}^{k_{r+1}} = 1 \) and hence the relation (4.2) does not also change. We can assume that \(\ell = r + 1 \) is \(p \nmid k_{r+1} \) even if we must reorder \(\{k_1, \ldots, k_r, k_{r+1}\} \).

It follows from (4.1) and (4.2) that

\[
\left(\omega_1^{k_1} \times \cdots \times \omega_r^{k_r} \times \omega_{r+1}^{k_{r+1}} \right)^p = q_1^{k_1} \times \cdots \times q_r^{k_r} \times q_{r+1}^{k_{r+1}}
\] (4.3)

As \(p \nmid k_{r+1} \) and the \(q_i \) are relatively prime then \(q_1^{k_1} \times \cdots \times q_r^{k_r} \times q_{r+1}^{k_{r+1}} \notin \mathbb{Q}^p \). Hence by (4.3) and Lemma 4.3, we have

\[
\mathbb{Q} \left(\sqrt[p]{q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}}} \right) = \mathbb{Q} \left(\omega_1^{k_1} \cdots \omega_r^{k_r} \omega_{r+1}^{k_{r+1}} \right), \quad \mathbb{Q} \left(\sqrt[p]{q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}}} : \mathbb{Q} \right) = p
\]

So

\[
\mathbb{Q} \left(\sqrt[p]{a} \right) = K = \mathbb{Q} \left(\sqrt[p]{q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}}} \right)
\]

since \(\omega_i \in K \) and \([K : \mathbb{Q}] = p \). Thus, by Corollary 4.5, we have

\[
q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}} = a^\alpha u^p \text{ with } 1 \leq \alpha \leq p - 1 \text{ and } u \in \mathbb{Q}
\]

It follows that the set of prime divisors of \(a \) is contained in \(\{q_1, \ldots, q_r, q_{r+1}\} \). Indeed let \(\pi \) be a prime divisor of \(a \). Then

\[
v_\pi \left(q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}} \right) = v_\pi (a^\alpha u^p) = v_\pi (a^\alpha) + v_\pi (u^p);
\]

if

\[
v_\pi \left(q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}} \right) = 0 \text{ then } v_\pi (a^\alpha) = -v_\pi (u^p), \text{ which is absurd since } p \mid v_\pi (u^p) \text{ and } 3 \ p \nmid v_\pi (a^\alpha). \text{ Moreover } q_{r+1} \mid a. \text{ Indeed } k_{r+1} =
\]

\[
v_{q_{r+1}} \left(q_1^{k_1} \cdots q_r^{k_r} q_{r+1}^{k_{r+1}} \right) = k_{r+1} (a^\alpha u^p) = v_{q_{r+1}} (a^\alpha) + v_{q_{r+1}} (u^p); \text{ hence } v_{q_{r+1}} (a^\alpha) \neq 0 \text{ since } p \nmid k_{r+1} \text{ and } p \mid v_{q_{r+1}} (u^p), \text{ so } v_{q_{r+1}} (a) \neq 0.
\]

\[\text{2} \omega^p = q \varepsilon \Leftrightarrow (-\omega)^p = q \varepsilon. \text{ Since } U_K = \pm V_K, \text{ it's enough to take } \varepsilon \text{ in } V_K \text{ instead of in } U_K.
\]

\[\text{3} \quad u^p \text{ is a } p\text{-th power and } a^\alpha \text{ is } p\text{-th power free since } a \text{ is } p\text{-th power free and } 0 \leq \alpha \leq p - 1.
\]
With the same idea, we can show that the set of prime divisors of \(a \) is contained in \(\{q_1, \ldots, q_r, q_{r+2}\} \). Thus we obtain a contradiction since \(q_{r+1} \mid a \) and \(q_{r+1} \notin \{q_1, \ldots, q_r, q_{r+2}\} \).

It follows from the previous that if \(M \) is a Pólya field then the number \(s \) of totally ramified prime numbers in \(K \) satisfied \(s \leq r + 1 \). Since \(r \) is the number of fundamental units in \(K \) and the signature of \(K \) is \((1, \frac{p-1}{2}) \) then \(r = \frac{p-1}{2} \).

Now let \(n_a \) be the number of prime divisors of \(a \). Then by Theorem 2.5 and Lemma 2.6,

\[
s = \begin{cases} n_a & \text{if } a^{p-1} \equiv 1 \mod p^2 \text{ or } p \mid a \\ n_a + 1 & \text{if } a^{p-1} \not\equiv 1 \mod p^2 \text{ and } p \nmid a \end{cases}
\]

Hence we have

\[
\begin{align*}
n_a & \leq \frac{p-1}{2} + 1 \quad \text{if } a^{p-1} \equiv 1 \mod p^2 \text{ or } p \mid a \\
n_a & \leq \frac{p-1}{2} \quad \text{if } a^{p-1} \not\equiv 1 \mod p^2 \text{ and } p \nmid a
\end{align*}
\]

since \(s \leq r + 1 \) and \(r = \frac{p-1}{2} \). \(\square \)

Remark 4.7. We will give an application of the previous Theorem on Theorem 1.1. Suppose \(a \) cubefree. Let \(n_a \) be the number of prime divisors of \(a \). Suppose that \(K = \mathbb{Q}(\sqrt[3]{a}) \) or \(M = \mathbb{Q}(j, \sqrt[3]{a}) \) is a Pólya field. By Theorem 4.1 and Remark 4.2, we have:

- \(n_a \leq 2 \) if \(a^2 \equiv 1 \mod 9 \) or \(3 \mid a \)
- \(n_a \leq 1 \) if \(a^2 \not\equiv 1 \mod 9 \) and \(3 \nmid a \)

Since \(\mathbb{Q}(\sqrt[3]{a}) = \mathbb{Q}(\sqrt[3]{a^2}) \), we can also suppose that \(a \) is not a square. More generally, for \(b, c \in \mathbb{N} \), we have \(\mathbb{Q}(\sqrt[3]{bc^2}) = \mathbb{Q}(\sqrt[3]{b^2c}) \). Moreover if \(3 \mid a \) then \(a^2 \not\equiv 1 \mod 9 \). Hence

- if \(a^2 \equiv 1 \mod 9 \) then \(a = q \) or \(a = q_1q_2 \) or \(a = q_1^2q_2 \)
- if \(a^2 \not\equiv 1 \mod 9 \) then \(a = q \) or \(a = 3q \) or \(a = 3q^2 \)

where \(q, q_1, q_2 \) are prime numbers. Thus a Pólya field of the form \(\mathbb{Q}(\sqrt[3]{a}) \) or \(\mathbb{Q}(j, \sqrt[3]{a}) \) must be in one of the sets of the following Definition except when \(a = 3 \).

Definition 4.8. Let

- \(E_1 \) be the set of fields \(K = \mathbb{Q}(\sqrt[3]{a}) \) and \(M = \mathbb{Q}(j, \sqrt[3]{a}) \) such that \(a \) is a prime number and \(a^2 \equiv 1 \mod 9 \).
- \(E_2 \) be the set of fields \(K = \mathbb{Q}(\sqrt[3]{a}) \) and \(M = \mathbb{Q}(j, \sqrt[3]{a}) \) such that \(a^2 \equiv 1 \mod 9 \) and there exist two prime numbers \(q_1, q_2 \) such that \(a = q_1q_2 \) or \(a = q_1^2q_2 \).
- \(E_3 \) be the set of fields \(K = \mathbb{Q}(\sqrt[3]{a}) \) and \(M = \mathbb{Q}(j, \sqrt[3]{a}) \) such that \(a^2 \not\equiv 1 \mod 9 \) and there exists a prime number \(q \), \(q \not= 3 \) such that \(a = q \) or \(a = 3q \) or \(a = 3q^2 \).

The following Theorem is a refinement of Theorem 1.1.

Theorem 4.9. \(M = \mathbb{Q}(j, \sqrt[3]{a}) \) is a Pólya field if and only if one of the following is satisfied
1) $M = \mathbb{Q}(j, \sqrt[3]{3})$
2) $M \in E_1$
3) $M \in E_2$ and there is an algebraic integer $\omega \in K$ and a prime q such that $N_{K/\mathbb{Q}}(\omega) = q$.
4) $M \in E_3$ and there is an algebraic integer $\omega \in K$ such that $N_{K/\mathbb{Q}}(\omega) = 3$.

Proof. The necessity follows naturally from Remark 4.7 and Theorem 3.1. By Corollary 3.7, 1) and 2) are sufficient. Let us now look at the sufficiency of 3) and 4). Suppose $M \in E_2$ and $a = q_1q_2$ where q_1 and q_2 are prime numbers. Suppose that there exists $\omega \in \mathbb{Z}_K$ such that $N_{K/\mathbb{Q}}(\omega) = q_1$. We will show that there exists $\omega' \in \mathbb{Z}_K$ such that $N_{K/\mathbb{Q}}(\omega') = q_2$ and by Theorem 4.1, we can conclude that M is a Pólya field. $a\mathbb{Z}_K = q_1q_2\mathbb{Z}_K = \omega^3q_2\mathbb{Z}_K$. Hence $q_2\mathbb{Z}_K = (\omega^{-1}\sqrt[3]{a})^3\mathbb{Z}_K$. So $\omega^{-1}\sqrt[3]{a} \in \mathbb{Z}_K$ and $N_{K/\mathbb{Q}}(\omega^{-1}\sqrt[3]{a}) = q_2$. Thus $\omega' = \omega^{-1}\sqrt[3]{a}$.

The condition 3) is then sufficient when $a = q_1q_2$. With the same idea we get the sufficiency of the cases ($M \in E_2$ and $a = q_1^2q_2$), ($M \in E_3$ and $a = 3q$ or $3q^2$). Finally let $M \in E_3$ such that a is a prime number and there exists $\omega \in \mathbb{Z}_K$ such that $N_{K/\mathbb{Q}}(\omega) = 3$. By Theorem 3.1, M is a Pólya field since the only prime divisors of $3a$ are 3 and a, $a^2 \not\equiv 1 \mod 9$, $N_{K/\mathbb{Q}}(\omega) = 3$ and $N_{K/\mathbb{Q}}(\sqrt[3]{a}) = a$. Therefore we can conclude that all conditions of the Theorem are sufficient.□

Remark 4.10. Let us show why Theorem 4.9 is a refinement of Theorem 1.1. By Remark 3.2, the condition $(b^2 \equiv c^2 \mod 9)$ of Theorem 1.1 is equivalent to $(a^2 \equiv 1 \mod 9)$. By Theorem 1.1, to know a Pólya field $\mathbb{Q}(j, \sqrt[3]{a})$, we must solve the norm form equations $N_{K/\mathbb{Q}}(\omega) = q$, $\omega \in \mathbb{Z}_K$ for all prime divisors of a or $3a$ (depending on whether we have $a^2 \equiv 1 \mod 9$ or not). Each of these equations is difficult to solve in general. Theorem 4.9 shows that this resolution is not necessary if the number n_a of prime divisors of a satisfies

- $n_a > 2$ and $(a^2 \equiv 1 \mod 9$ or $3 \mid a$)
- $n_a > 1$ and $(a^2 \not\equiv 1 \mod 9$ and $3 \nmid a$)

since in this case Theorem 4.9 shows clearly that M is not a Pólya field. For example $\mathbb{Q}(j, \sqrt[3]{30})$ is not a Pólya field since $n_{30} = 3 > 2$. Similarly $\mathbb{Q}(j, \sqrt[3]{77})$ is not since $n_{77} = 2 > 1$, $77^2 \equiv (-4)^2 \equiv -2 \not\equiv 1 \mod 9$ and $3 \nmid 77$.

Moreover even if we need to solve norm form equation $N_{K/\mathbb{Q}}(\omega) = q$, only one is necessary in the Theorem 4.9 whereas in Theorem 1.1 it must be solved for all prime divisors of a. For example, suppose $3 \nmid a$ and a cubefree. If the Thue equation $x^3 + ay^3 = 3$ has a solution $x, y \in \mathbb{Z}$ then the field $M = \mathbb{Q}(j, \sqrt[3]{a}) = K(j)$ is a Pólya field if and only if a is a prime number or a square of a prime. Indeed $x^3, y^3 \equiv \{-1, 0, 1\} \mod 9$. Hence $a \equiv \pm\{4, 3, 2\} \mod 9$, so $a^2 \not\equiv 1 \mod 9$. Thus $M \not\in E_1$ and $M \not\in E_2$. Hence, by Theorem 4.9, if M is a Pólya field field then $M \in E_3$. Since $3 \nmid a$ and $\mathbb{Q}(\sqrt[3]{a}) = \mathbb{Q}(\sqrt[3]{a^2})$, a must be a prime number or a square of a prime number. The conclusion follows since $N_{K/\mathbb{Q}}(x + y\sqrt[3]{a}) = x^3 + ay^3 = 3$ gives us one solution of norm form equation. In particular let $x \in \mathbb{Z}$ such that $3 \nmid x$ and $3 + x^3$ cubefree. Then $\mathbb{Q}(j, \sqrt[3]{3 + x^3})$ is a Pólya field if and only if $3 + x^3$ is a prime number or $a = 4$. Indeed it follows from [5] that $3 + x^3$ is a square of an integer if and only if $x = 1$.

References

1 Laboratoire de Théorie des Nombres, Algèbre, Géométrie Algébrique et Topologie Algébrique (TNAGATA), UFR. Sciences Exactes et Appliquées, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
Email address: kientdia@yahoo.fr

2 Laboratoire d’Algèbre, de Mathématiques Discrètes et d’Informatique (LAMDI), Université Nazi Boni, 01 BP 1091 Bobo Dioulasso 01, Burkina Faso.
Email address: tmytapsoba@yahoo.fr

3 Laboratoire de Théorie des Nombres, Algèbre, Géométrie Algébrique et Topologie Algébrique (TNAGATA), UFR. Sciences Exactes et Appliquées, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
Email address: tougmacarles@yahoo.fr