ON THE NON-SPECIAL PART OF THE WEIERSTRASS SEMIGROUOS OF \(n \)-POINTS OF A SMOOTH CURVE

E. BALLICO

Abstract. Let \(X \) be a smooth curve of genus \(g \geq 3 \). For any \(n \geq 2 \) and any \(n \) distinct points \(P_1, \ldots, P_n \in X \) let \(H(P_1, \ldots, P_n)^+ \) be the set of all \((a_1, \ldots, a_n) \in \mathbb{N}^n \) such that \(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n) \) is spanned and non-special. This set is closed by the operation \(\preccurlyeq \) where \((a_1, \ldots, a_n) \preccurlyeq (b_1, \ldots, b_n) \) if and only if \(a_i \leq b_i \) for all \(i \). We raise some questions on the minimal cardinality of a subset of \(H(P_1, \ldots, P_n)^+ \) generating it using \(\preccurlyeq \) and compute this number in a few examples.

1. Introduction

Let \(X \) be a smooth curve of genus \(g \geq 3 \). Fix an integer \(n > 0 \) and \(P_1, \ldots, P_n \in X \) with \(P_i \neq P_j \) for all \(i \neq j \). Let \(H(P_1, \ldots, P_n) \subset \mathbb{N}^n \) be the set of all \((a_1, \ldots, a_n) \in \mathbb{N}^n \) such that \(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n) \) is spanned, i.e. such that there is rational function on \(X \) with \(a_1 P_1 + \cdots + a_n P_n \) as its divisors of poles. The set \(H(P_1, \ldots, P_n) \) is a semigroup for the componentwise addition \(+ : \mathbb{N}^n \times \mathbb{N}^n \to \mathbb{N}^n \) and \(G(P_1, \ldots, P_n) := \mathbb{N}^n \setminus H(P_1, \ldots, P_n) \) is a finite set. The semigroup \(H(P_1, \ldots, P_n) \) is called the Weierstrass semigroup of the points \(P_1, \ldots, P_n \), while the elements of \(G(P_1, \ldots, P_n) \) are called the gaps of \(P_1, \ldots, P_n \) ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [13], [14]). Define the following partial ordering \(\preccurlyeq \) on \(\mathbb{N}^n \). Write \((a_1, \ldots, a_n) \preccurlyeq (b_1, \ldots, b_n) \) if and only if \(a_i \leq b_i \) for all \(i \). Set \(H(P_1, \ldots, P_n)^+ := \{(a_1, \ldots, a_n) \in H(P_1, \ldots, P_n) : h^1(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)) = 0 \} \). We have \(a \in H(P_1, \ldots, P_n)^+ \) if and only if \(b \in H(P_1, \ldots, P_n) \) for all \(b \in \mathbb{N}^n \) such that \(b \succeq a \). Therefore \(H(P_1, \ldots, P_n)^+ \) is a set closed for \(\preccurlyeq \). The set \(\mathbb{N}^n \setminus H(P_1, \ldots, P_n)^+ \) is finite, because every line bundle on \(g \) with degree \(\geq 2g \) is spanned and non-special. If \(n = 1 \), then \(H(P_1)^+ \) is the set of all integers \(\geq n_g + 1 \), where \(n_g \) is the largest element of \(G(P_1) \). A non-empty subset \(A \) is closed for \(\preccurlyeq \) if and only \(a + b \in A \) for every \(a \in A \) and every \(b \in \mathbb{N}^n \). Hence the union of \(\{0\} \) and a set closed with respect to \(\preccurlyeq \) is a semigroup. For each \(S \subseteq \mathbb{N}^n \), \(S \neq \emptyset \), there is a minimal subset \(A[S] \) containing \(S \) and closed with respect to \(\preccurlyeq \). Let \(A \subseteq \mathbb{N}^n \) be a non-empty subset closed with respect to \(\preccurlyeq \) and with \(\mathbb{N}^n \setminus A \) finite. Let \(C(A) \) be a minimal set \(S \subset A \) such that \(A = A[S] \). The set \(C(A) \) exists, it is finite.
and it is unique, because the intersection of any family of subsets of \(\mathbb{N}^n \) closed with respect to \(\preceq \) is either empty or a set closed with respect to \(\preceq \). We will say that \(C(A) \) is the set of all corners of \(A \). If \(A = H(P_1, \ldots, P_n)^+ \) for some curve \(X \) and some \(P_1, \ldots, P_n \in X \), then set \(C(P_1, \ldots, P_n)^+ := C(H(P_1, \ldots, P_n)^+) \). Let \(\Delta(n, g) \) (resp. \(\eta(n, g) \)) denote the maximal (resp. minimal) cardinality of \(C(P_1, \ldots, P_n)^+ \) among all \(X, P_1, \ldots, P_n \) with \(X \) a smooth curve of genus \(g \) and \(P_1, \ldots, P_n \) distinct points of \(X \).

Now assume that \(X \) is a hyperelliptic curve of genus \(g \geq 2 \) and that \(P_1, \ldots, P_n \) are distinct Weierstrass points of \(X \). It is easy to check that the integer \(\delta(n, g) := \sharp(C(P_1, \ldots, P_n)^+) \) depends only from \(n \) and \(g \), not even on the characteristic of the algebraically closed base field \(K \) (Remark 3.2). Of course, the integer \(\delta(n, g) \) is defined only if a genus \(g \) hyperelliptic curve has at least \(n \) Weierstrass points, i.e. if \(n \leq 2g + 2 \) (case \(\text{char}(\mathbb{K}) \neq 2 \)) or \(n \leq g + 1 \) (case \(\text{char}(\mathbb{K}) = 2 \)).

Question 1. Is \(\Delta(n, g) = \delta(n, g) \) if \(g \gg n \)?

Question 1 is true (for any \(g \geq 2 \)) when \(n = 2 \). Indeed we prove the following easy result.

Theorem 1.1. For any smooth curve \(X \) of genus \(g \geq 2 \) and \(n \) distinct points \(P_1, \ldots, P_n \) we have \(\sharp(C(P_1, \ldots, P_n)^+) \leq \binom{n+2g-1}{n-1} \) and equality holds if and only if \(n = 2 \), \(X \) is a hyperelliptic curve and \(P_1, P_2 \) are distinct Weierstrass points of \(X \).

Let \(X \) be an integral projective curve with arithmetic genus \(g := p_a(X) \geq 2 \). We may define without any modification \(H(P_1, \ldots, P_n) \) and \(H(P_1, \ldots, P_n)^+ \) and hence \(C(P_1, \ldots, P_n)^+ \) if we only take distinct smooth points of \(X \), i.e. we impose that \(P_i \in X_{\text{reg}} \) for all \(i \). Let \(\Delta'(n, g) \) (resp. \(\eta'(n, g) \)) be the the maximal (minimal) integer \(\sharp(C(P_1, \ldots, P_n)) \) among all integra curves \(X \) of genus \(g \) and any \(n \)-ple of distinct point \(P_1, \ldots, P_n \in X_{\text{reg}} \). Obviously \(\Delta'(n, g) \geq \Delta(n, g) \).

Question 2. Is \(\Delta'(n, g) = \Delta(n, g) \)? Is \(\eta'(n, g) = \eta(n, g) \)?

Remark 1.2. Theorem 1.1 works verbatim for smooth points of singular curves and hence \(\Delta'(2, g) = \Delta(2, g) = 2g + 1 \).

2. **General results**

For any \(a = (a_1, \ldots, a_n) \in \mathbb{N}^n \) set \(\|a\| := a_1 + \cdots + a_n \). For any integer \(r \geq 0 \) set \(S(n, r) := \{a \in \mathbb{N}^n : \|a\| = r\} \) and \(D(n, r) := \{a \in \mathbb{N}^n : \|a\| \leq r\} \)

Remark 2.1. Let \(A \subset \mathbb{N}^n \) be a set closed with respect to \(\preceq \) such that \(A \supseteq \mathbb{N}^n \setminus D(n, r) \) for some \(r > 0 \). Then \(C(A) \subseteq D(n, r+1) \). In particular if \(P_1, \ldots, P_n \) are points on a smooth curve of genus \(g \), then \(\|a\| \leq 2g \) for all \(a \in C(P_1, \ldots, P_n) \). Since \(H(P_1, \ldots, P_n)^+ \subseteq \mathbb{N}^n \setminus D(n, g) \), we also have \(\|a\| \geq g + 1 \).

Lemma 2.2. Let \(A \subset \mathbb{N}^n \) be a subset closed with respect to \(\preceq \) and containing \(\mathbb{N}^n \setminus D(n, d-1) \). Then \(\sharp(C(A)) \leq \binom{n+d-1}{n-1} \) and \(\|a\| \leq d \) for each \(a \in C(A) \).

Proof. We have \(\sharp(S(n, d)) = \binom{n+d-1}{n-1} \). Therefore it is sufficient to find an injective map \(u : C(A) \to S(n, d) \). We have \(C(A) \subset D(n, d) \setminus \{(0, \ldots, 0)\} \). Fix \(a =
Proof. Riemann-Roch gives $\mathbb{N}^n \setminus D(n, 2g - 1) \subseteq H(P_1, \ldots, P_n)^+$. Apply Lemma 2.2. □

Proof of Theorem 1.1. The inequality follows from Lemma 2.2, because every degree $2g$ line bundle on X is spanned and non-special. If X is hyperelliptic and P_1, P_2 are distinct Weierstrass points, then $\sharp(H(P_1, P_2)^+) = 2g + 1$ by part (i) of Section 3. Take arbitrary X, P_1, \ldots, P_n such that $\sharp(C(P_1, \ldots, P_n^+)) = (n+2g-1)$. Let $u: C(P_1, \ldots, P_n^+) \to R(n, 2g)$ be the map defined in the proof of Lemma 2.2. Since u is injective, we get that u is bijective. If $a = (a_1, \ldots, a_n) \in D(r, 2g)$ and $a_n = 0$ and $a = u(b)$, then $a = b$, i.e. $H(P_1, \ldots, P_n)^+ \cap \mathbb{N}^{n-1} \times \{0\} = \mathbb{N}^{n-1} \setminus D(n - 1, 2g - 1)$. In particular we get $2g - 1 \notin H(P_i)$, i.e. $\omega_X \cong O_X((2g - 2)P_1)$. We may exchange the role of the indices $1, \ldots, n$ and get in this way that $O_X((2g - 2)P_i) \cong \omega_X$ for all i.

(a) Assume $n = 2$. Take $a = ((2g - 2)P_1, 2P_2)$ and fix $b \in C(P_1, \ldots, P_n^+)$ such that $a = u(b)$. By the definition of the map u either $b = (2g - 2, 0)$ or $b = (2g - 2, 1)$ or $b = (2g - 2, 2)$. Since $\omega_X \cong O_X((2g - 2)P_1)$ we have $(2g - 2, 0) \notin H(P_1, P_2)^+$. Riemann-Roch gives that $\omega_X(P_1)$ and $\omega_X(P_2)$ are not spanned and hence $(2g - 1, 0) \notin H(P_1, P_2)$ and $(2g - 2, 1) \notin H(P_1, P_2)^+$. Therefore $b = (2g - 2, 2)$. Take $a' = ((2g - 1)P_1, P_2)$ and fix $b' \in C(P_1, \ldots, P_n^+)$ such that $a' = u(b')$. By the definition of the map u either $b' = (2g - 1, 0)$ or $b = (2g - 1, 1)$. Since $(2g - 1, 0) \notin H(P_1, P_2)$, then $b' = (2g - 1, 1)$. Since $(2g - 2, 2) \in C(P_1, P_2^+)$, we have $(2g - 3, 2) \notin H(P_1, P_2)^+$. Since $h^1(O_X((2g - 3)P_1 + 2P_2)) = 0$ we get that $O_X((2g - 3)P_1 + 2P_2)$ is not spanned. Therefore the line bundle $O_X((2g - 3)P_1 + 2P_2)$ is not spanned either at P_1 or at P_2, i.e. (Riemann-Roch) either $O_X((2g - 4)P_1 + 2P_2) \cong \omega_X$ or $O_X((2g - 3)P_1 + P_2) \cong \omega_X$. First assume $O_X((2g - 3)P_1 + P_2) \cong \omega_X$. Since $\omega_X \cong O_X((2g - 2)P_1)$, we get $O_X(P_1) \cong O_X(P_2)$, contradicting the assumptions $P_1 \neq P_2$ and $g > 0$. Now assume $O_X((2g - 4)P_1 + 2P_2) \cong \omega_X$, i.e. $O_X((2g - 4)P_1 + 2P_2) \cong O_X((2g - 2)P_1)$, i.e. $O_X(2P_1) \cong O_X(2P_2)$. Since $P_1 \neq P_2$, we get that X is hyperelliptic and that P_1, P_2 are Weierstrass points of X.

(b) Now assume $n > 2$. We use induction on n. Since $H(P_1, \ldots, P_n)^+ \cap \mathbb{N}^{n-1} \times \{0\} = \mathbb{N}^{n-1} \setminus D(n - 1, 2g - 1)$, we get that X is hyperelliptic and that P_1, \ldots, P_{n-1} are Weierstrass points of X. Exchanging the role of n and $n-1$ we get that P_1 is a Weierstrass point of X. If $n = 3$, then part (ii) of section 3 gives a contradiction. If $n \geq 4$, we get the contradiction taking $H(P_1, \ldots, P_n)^+ \cap \mathbb{N}^3 \times \{0, \ldots, 0\}$ and then quoting again part (ii) of section 3. □

The following example is called the non-special case, because it is the case $H(P_1, \ldots, P_n)^+ = H(P_1, \ldots, P_n)$.
Example 2.4. Let X be a smooth curve of genus g and $P_1, \ldots, P_n \in X$ (we allow the case $P_i = P_j$ for some $i = j$). Assume that for all $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$ we have $h^0(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)) = \max\{|a| + 1 - g, 0\}$, i.e. $h^0(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)) = \max\{g - 1 - |a|, 0\}$. We have $H(P_1, \ldots, P_n) = H(P_1, \ldots, P_n) = \mathbb{N}^n \setminus D(n, g)$ and hence $C(P_1, \ldots, P_n, +) = S(n, g + 1)$. Therefore $\sharp(\mathcal{C}(P_1, \ldots, P_n, +)) = (\frac{g + n}{n - 1})$.

Proposition 2.5. We have $\eta(2, 2) = 3$ and the triples (X, P_1, P_2) such that $\sharp(\mathcal{C}(P_1, P_2, +)) = 3$ are the ones with neither P_1 nor P_2 a Weierstrass point of X and $\omega_X \cong \mathcal{O}_X(P_1 + P_2)$.

Proof. Fix any X, P_1, P_2 with $P_1 \neq P_2$. The set $\mathcal{C}(P_1, P_2, +)$ contains exactly one element $(a, 0)$ and one element $(0, b)$. Since $g = 2$, we have $3 \leq a \leq b$ and $3 \leq b \leq 4$. Since $(2, 2)$ cannot be obtained from these two elements using \leq, we get $\sharp(\mathcal{C}(P_1, P_2)) \geq 3$. Now assume $\sharp(\mathcal{C}(P_1, P_2)) \leq 3$. Since $\{(3, 1), (1, 3)\} \in H(P_1, P_2)$, we get $a = b = 3$ (i.e. neither P_1 nor P_2 is a Weierstrass point of X) and that $(1, 2) \notin H(P_1, P_2)$, i.e. $\mathcal{O}_X(2P_1 + P_2)$ is not spanned. Since P_1 is not a Weierstrass point, we have $h^0(\mathcal{O}_X(2P_1)) = 1$. Since $h^0(\mathcal{O}_X(2P_1 + P_2)) = 3$ and $\mathcal{O}_X(2P_1 + P_2)$ is not spanned, Riemann-Roch gives $\omega_X \cong \mathcal{O}_X(P_1 + P_2)$. Conversely, if neither P_1 nor P_2 a Weierstrass point of X and $\omega_X \cong \mathcal{O}_X(P_1 + P_2)$, then $(3, 0) \in H(P_1, P_2)$, $(0, 3) \in H(P_1, P_2)$, $(2, 1) \notin H(P_1, P_2)$, $(1, 2) \notin H(P_1, P_2)$, and hence $\mathcal{C}(P_1, P_2, +) = \{(3, 0), (2, 2), (0, 3)\}$. \hfill \Box

3. Hyperelliptic curves and their Weierstrass points

Let X be a smooth hyperelliptic curve of genus g and P_1, \ldots, P_n Weierstrass points of X with $P_i \neq P_j$ for all $i \neq j$. Set $\delta(g, n) := \sharp(\mathcal{C}(P_1, \ldots, P_n, +))$. In this section we first show that the integer $\delta(n, g)$ does not depend from X, P_1, \ldots, P_n (not even from the characteristic of the base field), but only from g and n. But of course, we need to assume the existence of X, P_1, \ldots, P_n. In characteristic $\neq 2$ for any fixed genus $g \geq 2$ we may take as n any integer $\leq 2g + 2$. In characteristic 2 we need the assumption $n \leq g + 1$ and for some hyperelliptic curve even this bound is not achieved. We are in the set-up of \cite[§3]{1} with $a = 0$ and $b = c = 0$. In parts (i), (ii), (iii), (iv), (vii), (viii) we compute $\delta(n, g)$ when $2 \leq n \leq 4$. We also check $\delta(n, 2)$ for any $n \leq 6$ (parts (v) and (vi)). In each of these cases we also compute the integers $\sharp(\mathcal{C}(P_1, \ldots, P_n, +)) \cap S(n, x)$ for all x and describe the sets $H(P_1, \ldots, P_n) \cap S(n, x)$ and $\mathcal{C}(P_1, \ldots, P_n, +) \cap S(n, x)$.

Remark 3.1. Let X be a hyperelliptic curve of genus g and P_1, \ldots, P_n Weierstrass points of X. Fix $(a_1, \ldots, a_n) \in \mathbb{N}^n$. We have $h^1(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)) = \max\{0, g - \sum i |(a_i + 1)/2|\}$ and $h^0(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)) = a_1 + \cdots + a_n + 1 - g + h^1(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n))$. Therefore $h^1(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)) = 0$ if and only if $\sum i |(a_i + 1)/2| \geq g$. Since $\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)$ is spanned outside P_1, \ldots, P_n we also get that $(a_1, \ldots, a_n) \in H(P_1, \ldots, P_n)$ if and only if either $\sum i |(a_i + 1)/2| \geq g + 1$ or $\sum i |(a_i + 1)/2| = g$ and each a_i is even. Note that in the latter case $\|a\|$ is even and $\|a\| \geq 2g$. By Remark 2.1 we need to test only $\sum i |(a_i + 1)/2| \geq g + 1$, except in the case $\|a\| 2g$ and all a_i even.
Claim: Assume that each a_i is even and that $\|a\| = 2g$. Then we have $a \in \mathcal{C}(P_1, \ldots, P_n, +)$.

Proof of the Claim: Remark 3.1 gives $a \in H(P_1, \ldots, P_n)^+$. Assume the existence of $b = (b_1, \ldots, b_n) \in H(P_1, \ldots, P_n)^+$ such that a is obtained from b using \leq, i.e. $a_i \geq b_i$ for all i and there is $h \in \{1, \ldots, n\}$ with $a_h > b_h$. Since $H(P_1, \ldots, P_n)^+$ is closed for \leq, using $\|a\| - \|b\| - 1$ intermediate steps (if necessary) we reduce to the case $\|b\| = 2g - 1$, i.e. $b_i = a_i$ for all $i \neq h$ and $b_h = a_h - 1$. Since $b_h \in \mathbb{N}$ and b_h is odd, then $b_h > 0$. Set $c_i := a_i$ if $i \neq h$ and $c_h = b_h - 1$. Set $c := (c_1, \ldots, c_n)$. Since $\|c\| = 2g - 2$ and each c_j is even, then $c_1 P_1 + \cdots + c_n P_n \leq 1$. Riemann-Roch gives that P_h is a base point of the line bundle $\mathcal{O}_X(b_1 P_1 + \cdots + b_n P_n)$, a contradiction.

Remark 3.2. By induction on n using Remark 3.1 we first get the explicit description of the sets $H(P_1, \ldots, P_n)^+ \cap S(n, r)$ for any r and then that the integer $\sharp(\mathcal{C}(P_1, \ldots, P_n, +))$ depends only on n and g. We didn’t found a closed formula for it, but we list it (with proofs) when $n \leq 4$.

(i) We have $\delta(2, g) = 2g + 1$.

Proof. By Remark 3.1 we have $(a_1, a_2) \in H(P_1, P_2)^+$ if and only if $a_1 + a_2 \geq 2g$. Hence $\mathcal{C}(P_1, P_2) = \{(c, 2g - c)\}_{0 \leq c \leq 2g}$. Therefore $\delta(g, 2) = 2g + 1$. □

(ii) We have $\delta(3, g) = g^2 + 4g + 1$ and $(a_1, a_2, a_3) \in \mathcal{C}(P_1, P_2, P_3)$ if and only if either each a_i is odd and $a_1 + a_2 + a_3 = 2g - 1$ or each a_i is even and $a_1 + a_2 + a_3 = 2g$ or $a_h = 0$ for one index, the other two a_i are odd and $a_1 + a_2 + a_3 = 2g$.

Proof. Fix $(a_1, a_2, a_3) \in \mathcal{C}(P_1, P_2, P_3)$. Remark 3.1 gives $a_1 + a_2 + a_3 \leq 2g$. Remark 3.1 gives $a_1 + a_2 + a_3 \geq 2g - 1$ and that equality holds if and only if each a_i is odd (note that this is true even in the case $g = 2$ in which $g + 1 = 2g - 1$). We have $a_i = 2b_i + 1$ and $a_1 + a_2 + a_3 = 2g - 1$ with $b_i \in \mathbb{N}$ if and only if $b_1 + b_2 + b_3 = g - 2$. Therefore $\sharp(\mathcal{C}(P_1, P_2, P_3) \cap S(3, 2g - 1)) = \binom{3}{2}$. Fix $a = (a_1, a_2, a_3) \in \mathcal{C}(P_1, P_2, P_3) \cap S(3, 2g - 1)$. Using \leq it gives the following elements $(a_1 + 1, a_2, a_3), (a_1, a_2 + 1, a_3)$ and $(a_1, a_2, a_3 + 1)$. Any such element, say $(c_1, c_2, c_3) = (a_1, a_2, a_3 + 1)$, uniquely recovers a, because its odd elements (here a_1 and a_2) are coordinates of a, while two of the coordinates of a uniquely determine the third one, since $a_1 + a_2 + a_3 = 2g - 1$. Since $H(P_1, P_2, P_3)^+ \supset S(3, 2g)$ and $\sharp(S(3, 2g)) = \binom{2g + 2}{2}$, we get $\sharp(\mathcal{C}(P_1, P_2, P_3) \cap S(3, 2g)) = \binom{2g + 2}{2} - 3\binom{g}{2}$ and hence $\sharp(\mathcal{C}(P_1, P_2, P_3)) = \binom{2g + 2}{2} - 2\binom{g}{2} = g^2 + 4g + 1$. □

(iii) We have $\delta(4, g) = (2g^3 + 3g^2 + 13g + 6)/6$ for all $g \geq 5$.

Proof. Since $g \geq 5$, we have $g + 1 \leq 2g - 4$. Fix any $b = (b_1, b_2, b_3, b_4) \in \mathbb{N}^4$. By Remark 2.2 we have $b \notin \mathcal{C}(P_1, P_2, P_3, P_4, +)$ if $\|b\| > 2g$. Now assume $\|b\| = 2g - 3$. Since $n = 4$ is even, at least one entry of b is even. Remark 3.1 gives $b \notin H(P_1, P_2, P_3, P_4)^+$. Therefore $H(P_1, P_2, P_3, P_4)^+ \cap S(4, x) = \emptyset$ for all $x < 2g - 2$. Now assume $\|b\| = 2g - 2$. Hence an even number of entries of b is odd. By Remark 3.1 we have $b \in H(P_1, P_2, P_3, P_4)^+$ if and only if all b_i’s are odd. Writing $b_i = 2c_i + 1$ with $c_i \in \mathbb{N}$ and $\sum (2c_i + 1) = 2g - 2$ we get $\sharp(\mathcal{C}(P_1, P_2, P_3, P_4, +) \cap S(4, 2g - 2)) = \binom{g}{3}$. By Remark 3.1 $b \in H(P_1, P_2, P_3, P_4)^+ \cap$
$S(4, 2g - 1)$ if and only if $b_1 + b_2 + b_3 + b_4 = 2g - 1$ and exactly one entry of b is even. Therefore a quadruple $b \in H(P_1, P_2, P_3, P_4) \cap S(4, 2g - 1)$ does not come from an element of $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 2g - 2)$ using \preceq, i.e. adding $+1$ to exactly one entry of an element of $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 2g - 2)$, if and only if its even entry is zero. Hence $\sharp(C(P_1, P_2, P_3, P_4^+) \cap S(4, 2g - 2)) = 4(\frac{g}{3}) = 2g^2 - 2g$. Now assume $b \in S(4, 2g)$. We have $S(4, 2g) \subset H(P_1, P_2, P_3, P_4)^+$. The quadruple b has an even number of odd entries. The quadruple b does not come from an element of $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 2g - 1)$ using \preceq if and only if either its 4 entries are even or if it has two entries odd and two entries zero. The first case happens for $(\frac{g+3}{3})$ b’s, while the second one happens for $6g$ b’s. Therefore $\delta(4, g) = (\frac{g}{3}) + 2g^2 - 2g + (\frac{g+3}{3}) + 6g = (2g^3 + 3g^2 + 13g + 6)/6$.

(iv) We have $\delta(4, 2) = 26$ (this case does not exists in characteristic 2).

Proof. We have $g + 1 = 3$, $2g = 4$, $(2, 1, 0, 0) \notin H(P_1, P_2, P_3, P_4)^+$, $(3, 0, 0, 0) \notin H(P_1, P_2, P_3, P_4)^+$ and $(1, 1, 1, 0) \in H(P_1, P_2, P_3, P_4)^+$. Permuting the indices we get $\sharp(C(P_1, P_2, P_3, P_4^+) \cap S(4, 3)) = 4$. Take $a = (a_1, a_2, a_3, a_4) \in S(4, 4)$. We have $a \in H(P_1, P_2, P_3, P_4)^+$. The quadruple a comes from $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 3)$ using \preceq if and only if at most one a_i is zero. We get 4 elements of $C(P_1, P_2, P_3, P_4^+) \cap S(4, 4)$ with exactly 1 non-zero entry and 6×3 elements of $C(P_1, P_2, P_3, P_4^+) \cap S(4, 4)$ with exactly 2 non-zero entries. Therefore we have $\sharp(C(P_1, P_2, P_3, P_4^+) \cap S(4, 4)) = 22$. Hence $\delta(4, 2) = 26$.

(v) We have $\delta(5, 2) = 45$ (this case does not exists in characteristic 2).

Proof. The set $H(P_1, \ldots, P_5)^+ \cap S(5, 3)$ is formed by all quintuples with exactly 3 ones and 2 zeroes as entries. Hence $a \in H(P_1, \ldots, P_5) \cap S(5, 4)$ does not come from $H(P_1, \ldots, P_5)^+ \cap S(5, 3)$ if and only if at least 3 of its entries are zero; we have $3(\frac{5}{3}) = 30$ elements of $S(5, 4)$ with exactly 3 zeroes as entries and 5 elements of $S(5, 4)$ with 4 zeroes. Therefore $\delta(5, 2) = 10 + 30 + 5 = 45$.

(vi) We have $\delta(6, 2) = 71$ (this case does not exists in characteristic 2).

Proof. The set $H(P_1, \ldots, P_6)^+ \cap S(6, 3)$ is formed by all sextuples with exactly 3 ones and 3 zeroes as entries. Hence $a \in H(P_1, \ldots, P_6)^+ \cap S(6, 4)$ does not come from $H(P_1, \ldots, P_6)^+ \cap S(6, 3)$ if and only if at least 4 of its entries are zero; there are 6 elements of $S(6, 4)$ with 5 zero entries and $3(\frac{6}{2})$ elements of $S(6, 4)$ with exactly 4 zero entries. Therefore $\delta(6, 2) = 20 + 6 + 45 = 71$.

(vii) We have $\delta(4, 3) = 51$.

Proof. We have $g + 1 = 4$ and $2g = 6$. By Remark 3.1 we have $(1, 1, 1, 1) \in H(P_1, P_2, P_3, P_4)^+$, $(4, 0, 0, 0) \notin H(P_1, P_2, P_3, P_4)^+$, $(3, 1, 0, 0) \notin H(P_1, P_2, P_3, P_4)^+$, $(2, 1, 1, 0) \notin H(P_1, P_2, P_3, P_4)^+$ and similar statements are true permuting the indices. Hence $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 4) = \{(1, 1, 1, 1)\}$. By Remark 3.1 we have $a \in H(P_1, P_2, P_3, P_4)^+ \cap S(4, 5)$ if and only if a has 3 odd entries (since n is even, it cannot have all odd entries). If $a \in H(P_1, P_2, P_3, P_4)^+ \cap S(4, 5)$, then it comes from $(1, 1, 1, 1)$ using \preceq if and only if it has no non non-zero entry. Therefore each element of $C(P_1, P_2, P_3, P_4^+) \cap S(4, 5)$ has as entries 1 zero, 2 ones and 1 three. Hence $\sharp(C(P_1, P_2, P_3, P_4^+) \cap S(4, 5)) = 12$. An element of $S(4, 6)$ comes
from an element of $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 5)$ using \leq if and only if it has either 4 odd entries or 2 odd entries and at least an even non-zero entry. Hence it is a corner if and only if either all its entries are even or it has two zero entries and two odd entries. Hence $\sharp(\mathcal{C}(P_1, P_2, P_3, P_4, ^+) \cap S(4, 6)) = \binom{6}{3} + 18$. Therefore $\sharp(\mathcal{C}(P_1, P_2, P_3, P_4, ^+)) = 51$. □

(viii) We have $\delta(4, 4) = 87$.

Proof. We have $g + 1 = 5$ and $2g = 8$. Fix $a = (a_1, a_2, a_3, a_4) \in \mathbb{N}^4$. Since $n = 4$ is even, every element of $S(4, 5)$ has at least one even entry. Remark 3.1 gives $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 5) = \emptyset$. Remark 3.1 gives that $a \in H(P_1, P_2, P_3, P_4)^+ \cap S(4, 6)$ if and only if every a_i is odd; writing $a_i = 2b_i + 1$ with $b_i \in \mathbb{N}$ we get that there are 4 such elements. $a \in H(P_1, P_2, P_3, P_4)^+ \cap S(4, 7)$ if and only if exactly one entry of a is even; such a quadruple $a \in H(P_1, P_2, P_3, P_4)^+ \cap S(4, 7)$ does not come from $H(P_1, P_2, P_3, P_4)^+ \cap S(4, 6)$ using \leq if and only if the even entry is zero; therefore $\sharp(\mathcal{C}(P_1, P_2, P_3, P_4, ^+) \cap S(4, 7)) = 4 \binom{1}{2} = 24$. An element of $S(4, 8)$ comes from $H(P_1, P_2, P_3, P_4, ^+) \cap S(4, 7)$ using \leq if and only if either all its entries are even (there are $\binom{7}{3}$ such elements of $S(4, 8)$) or it has at least two zero entries and two odd entries (there are $6 \cdot 4 = 24$ such elements). Therefore $\delta(4, 4) = 4 + 24 + 35 + 24 = 87$. □

Acknowledgement. The author was partially supported by MIUR and GN-SAGA of INdAM (Italy).

References

1 Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy

E-mail address: ballico@science.unitn.it