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SCHWARZ LEMMA AND ITS APPLICATIONS ON THE UNIT
DISC

BULENT NAFI ORNEK!* AND NAZIF KANDEMIR2

ABSTRACT. In this article, a refinement of the Schwarz lemma (boundary
Schwarz lemma) is presented for a different class. For the analytic function

p(2) = 2+baz?+b323+..., defined in the unit disc U satisfying R (M) >

(r—s)z

0 for z € U, where r,s € C, r # s, |r| <1, |s| < 1, we estimate a module of
angular derivative at the boundary point 1with p(r) = p(s). The sharpness of
these estimates is also proved.

1. INTRODUCTION AND PRELIMINARIES

The classic Schwarz lemma provides details regarding the behavior of an analyt-
ical function on the unit disc under the minor hypotheses that the function maps
the unit disc to itself and the origin to the origin. We will look at the Schwarz
lemma in the unit disc for a different class and present the theorems in their
theoretical form. It will also be provided a variety of evidence and viewpoints
on the findings. In addition, an alternative Schwarz lemma will be presented
for the defined function. Circuit applications of Schwarz’s lemma are common.
Overall, the circuit application of the Schwarz lemma provides a powerful tool for
analyzing and designing electronic circuits. It allows engineers to obtain bounds
on the behavior of the circuit, understand its limitations, and ensure stability
and performance [10, 12]. The well-known Schwarz lemma, in its simplest form,
states the following [1]:

Lemma 1.1. Let g : U — U be an analytic function that fizes the origin 0.
Then, for all z € U = {2z : |z| < 1}, |g(2)| < |z| and |¢'(0)| < 1. Furthermore, if
lg(2)| = |z] for any z # 0 or |¢g'(0)| = 1, then g is a rotation: g(z) = ez for some
constant € with |e| = 1.

Now, we will determine an upper bound for the first coefficient in the Taylor
expansion of the analytic function that forms the class we give below. In addition,
a stronger evaluation will be made for this coefficient from above, taking into
account the non-zero zeros of the analytical function.
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Let p(z) = 2z +be2? + b32% + ... be an analytic function in U, (

p(r(zH;(sz)) >0
for z € U, where r,s € C, r # s, |r| <1, |s| < 1. Consider the functions

h(z) = 1 —w(z)

14 w(2)’
where
w(2>2%:1+b2(7ﬂ‘|‘8)2+b3(T2+T8+82)Z2+...

Here, h(z) is an analytic function in U, |h(z)| < 1 for z € U and h(0) = 0
Therefore, by the Schwarz lemma, we obtain

h(z)_l—w(z)__ by (r+8)z+ b3 (r* +rs+s%) 2%+ ...
S l4w(z) 24 by(r+s)z+bs(r24rs+s2) 22+
hz) _

by (r+s)+bs(r* +rs+s%)z+ ...
24by(r+s)z+b3(r2+rs+s?)22+...7

z

and

2
7+ 5|
Now, let us show that this last inequality is sharp. Let
p(rz) —p(sz) 1—=z

(r—s)z  1+z
From the expression of the function w(z), we have

p(rz) — p(sz)

|ba| <

" —5)z :1+bQ(T+s)z+b3(7"2—1—7"3—1—32)22—1—...,
1—2z
1+b by (r? N2+ =
+ by (r+s)z+bs(r’ +rs+s°) 2%+ T
—2z
b by (12 N2+ .. =
o (r+s8)z+0bs (rP+rs+s*) 2"+ T2
and 5
bg(r—l—s)—I—b3(r2+r5—|—52)z+...:1 :
—z
Passing to limit (z — 0) in the last equality yields
2
|b2| =

Ir+s|
Moreover, we have

R (p(ﬁ)__ﬁ(fz)) g <1 - ) I T

1+=2

2
%(1+Z> _ 1—|z|2 > 0.
1—-=2 11+ 2|

and
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Lemma 1.2. Let p(z) = z + bo2? + b32® + ... be an analytic function in U,
%(%) >0 for z € U, wherer,s € C, r # s, |r| <1, |s| < 1. Then we

have the inequality
2
by| < ————. 1.1
| 2| = |’I"—|— $| ( )
This result is sharp for the function

p(rz) — p(sz) _ 1—2z
(r—s)z 142

Now, let ¢, ¢, ..., ¢, be the zeros of the function 1 — % in U that are

different from zero. Consider the function

Cl-w(z) 1
S s =

Here, ¥(z) is an analytic function in U, ¢#(0) = 0 and |[9(z)| < 1 for z € U.
Therefore, J(z) satisfies the conditions of the Schwarz lemma. Thus, from the
Schwarz lemma, we obtain

by (r+8)z+bs(r*+rs+s?) 2%+ ... 1
79(2):— 5 5 5 ~ o
24 by (r+s)z+by(r*+rs+s°) 27+ L Tk
I(z) by (r +s) + b3 (r* +rs+s?)z+ ... 1
z 2+52(T+8)Z+b3(r2+rs+82)z2+...Z:MZ__C%’CZ’
b
19'(0)] = ’271“’—+5| <1
2n_ lexl
and -
|bo| < —— el
I+ sl

This result is sharp with equality for the function

p(rz) —p(sz) 1= zia1=5
(r—s)z 14 zp =2
Then
2 2\ .2 1 21?:1 1Z—_g€z
L+by(r+s)z+bs(ri+rs+s°)2"+.. = —
1427, 177’“
Crz
22p =k
bo(r+s)z+bs(r*+rs+s°)2>+..= o 7L
2 ( ) 3 ( ) 1+ Z}:;l 12_—Cckz
by (r+s) + b3 (T2+7"8+82)Z+... — 22:112:%2
L+ 20 ==
and

|bo| =
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Moreover, we have

R(2r=2bd) _ e
(=)= L e

2

z—cg
1—crz

1—

n
Rl=1

;20

n Z—Ck
I 1z

Lemma 1.3. Let p(z) = z + bo2? + b32® + ... be an analytic function in U,

%(P(T(i):;;(;@) 2 0 f07" z € U} where T, c (C; r 7é S, |7”| S ]_; |S| S 1. AZSO, let

1, Co, ..., Cp be the zeros of the function 1 — pr2)=p(2) iy 7 that are different from

(r—s)z
zero. Then we have the inequality
2 n
by| < —— Crl - 1.2
ol < oyl (12
The equality in (1.2) occurs for the function
p(rz) —p(sz) 1 —Ziai=s
(r—s)z L+ 25 7=

One of the important results of Schwarz lemma is at the boundary Schwarz
lemma. This lemma was first expressed by Unkelbach [11] and later restated by
Osserman [3]. This lemma is expressed as follows.

Lemma 1.4. Let g(z) be an analytic function in U, g(0) =0 and |g(z)| < 1 for
z € U. If g(z) extends continuously to boundary point 1 € OU = {z : |z| = 1},
and if |g(1)] =1 and ¢'(1) exists, then

2
/
J) > —= 1.3
and
lg'(1)] > 1. (1.4)
Moreover, the equality in (1.3) holds if and only if
z2—0

for some o € (—=1,0]. Also, the equality in (1.4) holds if and only if g(z) = ze®.

These inequalities and its generalizations have significant uses in the geomet-
ric theory of functions and continue to be popular topics in the mathematics
literature [1, 2, 3, 5, 6, 7, 8, 9, 10, 11].

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel

(see, [13]).

Lemma 1.5 (Julia-Wolff lemma). Let g be an analytic function in U, g(0) =0
and g(U) C U. If, in addition, the function g has an angular limit g(1) at 1 € OU,
lg(1)| = 1, then the angular derivative ¢'(1) exists and 1 < |¢'(1)] < oo.
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2. MAIN RESULTS
In this section, we discuss different versions of the boundary Schwarz lemma.

Theorem 2.1. Let p(z) = z + baz? + b3z + ... be an analytic function in U,

%(p—(r(j):g(;z)> >0 for z € U, wherer,s € C, r # s, [r| <1, |s| < 1. Assume

that, for 1 € OU, g has an angular limit p(1) at the points 1 with p(r) = p(s).
Then, we have the inequality

() = ()] 2 o.1)
The equality in (2.1) occurs for the function
p(rz) —p(sz) 11—z
(r—s)z T 1tz
Proof. Let )
1 —w(z
h(z) = T
Here, since the function h(z) satisfies the conditions of Lemma 1.4, we take
1< K1) = 2Wﬂﬂ2:2Mﬂﬂ—ﬂﬂ$
1+ w(1)| [ — s
and
/() — sl (] = 22
Now, we shall show that the inequality (2.1) is sharp. Let
p(rz) —p(sz) 1—z
(r—s)z T 1tz
Then
(rp'(rz) — sp'(sz)) (r —s)z = (r —s) (p(rz) —p(sz)) =2
((r—s)2)° (1+2)°
and for z =1
/() — spf () = 7
O

The inequality (2.1) can be strengthened from below by taking into account,
by = pT(O), the second coefficient of the expansion of the function p(z) = z+by2?+
b3Z3 + ...

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have
2|r — s

rp'(r) —sp'(s)] > ——————. 2.2

() =P )l 2 5 (2.2)
The inequality (2.2) is sharp with extremal function

p(rz) —p(sz)  1—2°

(r—s)z  1+2az+ 2%
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wher60<a:wgl.

Proof. Let the function h(z) be as given above. From the Lemma 1.4, we obtain

/ o
1+ |R(0)] I — s
Since
|bo [ + 5|
(o) = P
we take
2> _20r(r) - sp(s)
1+ |”2||2;+5\ - Ir — s|
and
2|r — s
rp/(r) — sp'(s)| > ——Mm8 ———.
rp'(r) — sp/( )!_2+‘T+8Hb2|
Let’s show the equality of this expression. Let
p(rz) —p(sz) = 1—2°
(r—s)z  1+2az+22

Then
(rp/(rz) — sp/(s2)) (r — s) z — (r — s) (p(rz) — p(sz))
((r—s)z)’
—22 (14 2az + 2%) — (2a + 22) (1 — 2?)
(14 2az + 22)°

and for z =1
rp'(r) —sp'(s)] _ 1
Ir — s l+a

b
For a = L;Jrsl < 1, we have

/ o o |7‘—3| _ 2|T_S|
[rp'(r) — sp'(s)| = 1 Lelltsl 2 4 by |1 + 5|

O

By including the bs coefficient in the Taylor expansion of the p(z) function, we
strengthen the above theorem.

Theorem 2.3. Let p(z) = z + bz + b3z® + ... be an analytic function in U,

%(p(r(i):sz;(zsz)) >0 for z € U, wherer,s € C, r # s, |r| <1, |s| < 1. Assume

that, for 1 € OU, g has an angular limit p(1) at the points 1 with p(r) = p(s).
Then, we have the inequality

rp'(r) = sp'(s)| =

lr — s |+ 2(2—\b2]]r+3|)2
2 4—(|b2H7"~|—8|)2+|2b3 (r2+rs+s2) — b3 (r—l—s)ﬂ
(2.3)



102 BULENT NAFI ORNEK AND NAZIF KANDEMIR

This result is sharp with the function

p(rz) — p(sz) _ 1= 22
(r—s)z 1422

Proof. Let h(z) take the form indicated above. and d(z) = z. By the maximum
principle, for each z € U, we have the inequality |h(z)| < |d(z)|. Therefore, we

take
h(z 1 /1—-w(z
az) = d((z§:Z(1+sz;)
by (r+s)z+bs (r* +rs+s?) 2% + ...
<_2—|—b2(T+s)z+b3(r2—|—rs+52)22—|—...)
by (r+s) +bs(r* +rs—+s%)z+ ...
24 b (r+8)z4by(r2+rs+ s2) 22+ .

is an analytic function in U and |¢(z)| < 1 for z € U. In particular, we have

1
z

bol |r + s
o)) = P <y (2.4)
and )
(0)] = ‘2()3 (r> +rs+s%) — b3 (r +s) |
1 )
The auxiliary function
o(z) = 42— 10
1 —q(0)q(2)

is analytic in U, ©(0) = 0, |©(2)| < 1 for |2|] < 1 and |©(1)] = 1 for 1 € OU.
From Lemma 1.4, we obtain
2 1- 2
o) &I = EO)I
1= 4{0)a(1)

L+ 1O ¢y 1y
1_|q(0)|{|h(1)! (D)}

24 b7 + 5| (2\7’19’(7”) —sp'(s)] 1)
2 — |bo| | + s ] ’

7 14 (1)

IN

Since

203 (12415452 ) —b2 (r+s)?
o) = 4O Pl ]
1—|q(0)f 1 <|b2||;+s>2
|2b3 (r* +rs+s%) — b3 (r—i—s)Q‘
4 — (|ba] |r + s|)?

Y

we obtain

2 2[balr+s| ( 2lrp'(r)—sp'(5)

< —1),

[atg( vt o) RG] — 2-Iballr+s] =]
4—(balIr+s))?
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2(2—|b2||r+s))* < Arp'(r)=sp'(s)| _ 4
A—(|ba|r+s)>+|2bs (r24rs+s2)—b3 (r+s)°| = |r—s|
and
MY any |r—s] 2(2—|bo||r+s))*
’Tp <T) sp (8)‘ =z 2 (4(b2r+s|)2+|2b3(r2+rs+52)b%(r+s)2’) ’

Now, let us show that this last inequality is sharp. Let

p(rz) — p(sz) _ 1= 22
(r—s)z 14 2%

Then
rp'(r) — sp'(s)| = [r — s].
On the other hand, we take

1— 2
1+b2(r+s)z—|—bg(r2+rs+32)22+...:r;,
by (r+s)z+bs (r* +rs+s°) 2> + = 1_—2/2—1
P 3 1122

B 222
142
Therefore, we have
by (r+ )+ b3 (r* +rs+s*) z + _ %
9 3 1—}-22

Passing to limit (z — 0) in the last equality yields b, = 0. Similarly, using

straightforward calculations, we take (r? 4+ rs + s%) b3 = —2. So, we obtain
|r—s| 2(2—|ba|lr+s))* — |y —
2 (1 + 4_(|b2|7"+8)2+|2b3(1"2+7"s+52)—b%(r+s)2|) - |T’ 8| : 0

If we include the non-zero zeros of the 1 — p(r(i)_;s(;z) function, we obtain the

following theorem.

Theorem 2.4. Let p(z) = z + boz? + b32® + ... be an analytic function in U,
%(%) >0 for z € U, where r,s € C, r # s, |r| <1, |s| < 1. Assume
that, for 1 € OU, g has an angular limit p(1) at the points 1 with p(r) = p(s).

Also, let c1,ca, ..., c, be zeros of the function 1 — % in U that are different

from zero. Then,

\rp'(r)—sp'(s)| >u 1+Zn:1_|ck|2+ 20 (2 5)
) 20 B4+ '

2

o =211 exf = |r + | [bal, 5= (2 i |ck|) (Ir + s/ [])?
k=1 k=1
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2

. This result

Ck

v = 1T le] ’21)3(7“2 s+ 82) — B3(r +8)% + 2bo(r + 5) 3 Al
=l k=1

is sharp with the function

1— 22 ﬁ 2= Ck

plrz) — plsz) _
(T—S)Z 1+22H 12:;;
k=1 "

where ¢y, ca, ..., c, are positive real numbers..

Proof. Assume that the function h(z) is as stated above and ¢y, ¢s, ..., ¢, be zeros

of the function 1 — % in U that are different from zero. Also, consider the

function
n

B(z):sz—Ck

—Crz
k=1 k

By the maximum principle for each z € U, we have
h(2)] < [B(2)].

Consider the function

_ h(z) _ [ 1-w(2) 1
G(z) = B(z) — (1+w(z)>

1
b2(T+S)Z+b3(T2+TS+S2)Z +... 1
T\ 24bo(r+s)z+b3(r24rsts2) 22+ . ﬁ z—cp,

k=1 1=eg=
. b2(r+s)+b3(r2+rs+52)z+.‘. 1
T 24ba(r )zt bs (2 HrstsD) 22 4. X a—cp
kl;ll 1=ep=
In particular, we have
I+ s||ba] 1
Gy = el
IT lex|
k=1

and

C

O (72 2) _p2 2 4 9p 1o
3(r® +rs+s%) = by(r 4+ 8)° + 2ba(r + 5) >° —-
k=1

G'(0)] = D
AT lex]
k=1
The auxiliary function
7(z) = SE =GO
1-G(0)G(2)

is analytic in U, |T'(z)| < 1 for |z| < 1 and T(0) = 0. For 1 € 9U, we take
T = 1.
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From Lemma 1.4, we obtain

2 1-[GOP
ol = YT T ggmen) ¢
< 121G (| ()] = [B(1)]).
It can be seen that a0
7(0) = SO
1—|G(0)]

and

n o o]—
2b3(r2+rs+s2)—b%(r+s)2+2b2(r+s) > %
k=1

n
4 11 ey
k=1

IT"(0)| = >
1— [r+s]lba| n1
( fo cu)

203 (r2+rs+52)—b2 (r+5)2+2ba (1+3) Z

((2H|ck| ~(Irtslia)) )

1B'(1) \_1+Z ’C’“; 1 €U
_k

|Ck\

n
= I lexl
k=1

Also,we have

Therefore, we obtain
2

2bg(r r24rs4s2)— b2(7‘+s)2+2b2(7‘+s) Z
=1

((2 IT \ck\ *(|T+5Hb2\)2>

n
2 TT lex|+]r+s]|b2]
k=1 2lrp! (r)—sp’(s)] Z 1—|eg|?
[r—s| 1—ci?

|Ck|
n

1+ IT lex]
k=1

< =%
2 IT lek|=[r+s]|bz]
k=1

n 2
2(2 1 \ck|27|r+s|\b2|)
k=1

<(2 1 \ck|) —(|7’+S|b2)2>+ T fel

< 2P =sp' ()] 1 Z 1—ex[?

|r—s [1—cl”

2b3(r2+7s+52)—b2 (r+s5)242ba (1+5) Z ﬂ

and so, we get mequahty (2.5).
Now, we shall show that the inequality (2.5) is sharp. Let

1—22

—
=l
4l
>0
NR‘

b
Il
—

p(rz) — p(sz)
(r—s)z

—_
+
N
[N}
Bl
==
il BN
|
lie

105
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If we take the derivative of both sides and substitute z = 1, we obtain
r—=s 14+¢
) = o)l = P (2 12,
k

where ¢1, ¢s, ..., ¢, are positive real numbers.
On the other hand, we have

227 [] ==
Pl Crz
L4by(r+s)z+bs(rP+rs+s)2+..=1— L
L+ 22 [] ==
k=1
Therefore, we take
2z kljl 12__%;
by(r+s)+bs(r’+rs+s)z+..=— —
1+22 [ =%
k=1

and

(a+b)ca+ (a® +ab+ V") czz + ... =
7= (1=7)2 H Tan ;
Passing to limit in the last equality yields b, = 0. Similarly, using straightforward
calculations, we take |bs (r? +rs + s?)| = 2 [] |cx|. Thus, for ¢y, cs, ..., ¢, € R, we
k=1

obtain

s 1oy s 1oy
(1 * Z a? t 5+7> = (1 + Z o

i)

n 2 n
(2 I \ck|) 11 lexli2bs (24 rst2)]
k=1 k=1

+

" 2
a(2 11 |ck|2)
_|r—s] 1+ Z 1—|cx)? ( kzl , _|r—s] (2 4 1+ck> 0
o c n n - k=1 1—¢; ) *
? 1-ef” (2 {1 1cel) +4( L jen) ? ek
k=1 k=1

The theorem giving the relationship between by and b3 is given below.

Theorem 2.5. Let p(z) = z + byz? + b3z + ... be an analytic function in U,
%(w> >0 forze U, wherer,s € C,r #s,|r| <1, |s| <1, 1—’%

(r—s)z r—s)z
has no zeros in U except z =0 and by > 0. Then, we have the inequality

b
by [r + s|In (M)‘ . (2.6)

Proof. Let by > 0 in the expression of the function p(z). Having in mind the

inequality (2.4) and the function 1 — % has no zeros in U except z = 0, we

1205 (r* + s+ 57) — b3 (r + )% < 4




SCHWARZ LEMMA AND ITS APPLICATIONS ON THE UNIT DISC 107

denote by In ¢(z) the analytic branch of the logarithm normed by the condition

Ing(0) =In (W) < 0.

_ Ing(z) —Ing(0)

~ Ing(z) + Ing(0)

is analytic in the unit disc U, |R(2)| < 1 for z € U, R(0) = 0.
By Schwarz lemma, we obtain

The auxiliary function

R(2)

; 21n¢(0)] q¢(0)
Lz [BO)]= IIn ¢(0) + In ¢(0)[* | ¢(0) ‘
~1 q/(O)‘
2Inq(0) | ¢(0)
|2b3 (r24rs+s?)—b3(r+s)°|

4
21n (b2\7"2+s|> ba|r+s]

3
bz(?“—i—s)ln(@)’.

and

1205 (r* + s+ 57) — b3 (r +5)%| < 4

3. CONCLUSION

In this brief, assuming that p(r) = p(s), r,s € C, we presented four theorems
with their proofs for boundary analysis of derivative of analytic functions partic-
ularly at the point z = 1. In the theorems, inequalities are generally strengthened
by taking into account the second and third terms of the Taylor expansion coeffi-
cients of the p(z) function. In future studies, considering the Taylor expansion of
the p(z) function around two points, the module of the derivative of the function
will be compiled below.
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