abstract. We will present in this paper the concept of matrix-product code
$[C_1, C_2, \cdots, C_s]A$ where C_1, C_2, \cdots, C_s are linear codes and matrix A has full rank. The purpose of this paper is to give some properties of these codes that will be useful later, the two main points being the existence of a MacWilliams identity (which is one reason the existence of the phenomenon of duality formal) and the structure of the matrix-product code on \mathbb{Z}_{p^k}.

1. Introduction

In the coding theory an interesting and important approach is to construct a new codes from known ones. In [1], Blackmore and all. introduced the notion of matrix product codes over finite fields for generalize some construction known in the coding theory. For example, the Plotkin’s well-known $(u|u+v)$-construction, the ternary $(u+v+w|2u+v|u)$-construction, the $(a+x|b+x|a+b+x)$-construction, and the $(u + v|u − v)$-construction and etc. But the challenge problem is to determine the parameters of the new codes (length, dimension, minimal Hamming distance, \cdots) from the initial codes. To answer this question there are some other articles focusing on the study of decoding and the construction of matrix product codes ([3, 5]) have appeared.

2. Matrix Product Codes

Definition 2.1. Let C_1, C_2, \cdots, C_s be linear codes of length m over \mathbb{F}_q and $A = (a_{ij})$ in $M_{s \times l}(\mathbb{F}_q)$ with $s \leq l$. A matrix product codes C_A associated to C_1, C_2, \cdots, C_s and A is the linear code over \mathbb{F}_q of length ml defined by :

$$C_A = \{ (\sum_{i=1}^{s} a_{i1}x_i, \sum_{i=1}^{s} a_{i2}x_i, \cdots, a_{il}x_i) | x_i \in C_i \}$$

2.1. Description of C_A. If

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sl} \end{pmatrix}$$

Then :
Example 2.2. Let $C := [C_1, C_2, \ldots, C_s] = \{(x_1x_2 \cdots x_s) \in M_{m \times s}(\mathbb{F}_q) \mid x_i^t \in C_i\}$

We define:

$C^t := \{X^t \mid X \in C\}$ and $A^tC^t := \{A^tY \mid Y \in C^t\}$

Take Z element of the A^tC^t, so $\exists Y \in C^t : Z = A^tY$, $Y \in C^t \iff \exists X \in C; X^t = Y$

on the other hand $X \in C \iff \exists x_i : x_i^t \in C_i$ and $X = (x_1x_2 \cdots x_s) \text{ so }$

$Z = \left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{s1} \\
a_{12} & a_{22} & \cdots & a_{s2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1l} & a_{2l} & \cdots & a_{sl}
\end{array}\right) \times \left(\begin{array}{c}x_1 \\
x_2 \\
\vdots \\
x_s
\end{array}\right) = \left(\begin{array}{c}\sum_{i=1}^{s} a_{1i}x_i \\
\sum_{i=1}^{s} a_{2i}x_i \\
\vdots \\
\sum_{i=1}^{s} a_{si}x_i
\end{array}\right)$

$Z^t = (\sum_{i=1}^{s} a_{1i}x_i; \sum_{i=1}^{s} a_{2i}x_i; \ldots, a_{si}x_i) \in C_A$, so $(A^tC^t)^t = C_A$ that means $C.A = C_A$

Example 2.2. Let $C_1 = \{000, 111\}$ and $C_2 = \{000, 011\}$ two linear codes of length $m = 3$ and $s = 2$ and consider the two matrix $A = \left(\begin{array}{ccc}1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)$ and

$B = \left(\begin{array}{ccc}1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)$

$[C_1C_2] := \{(x_1x_2) \mid x_i \in C_i\} = \left\{\left(\begin{array}{c}0 \\
0
\end{array}\right); \left(\begin{array}{c}0 \\
0
\end{array}\right); \left(\begin{array}{c}1 \\
0
\end{array}\right); \left(\begin{array}{c}0 \\
1
\end{array}\right); \left(\begin{array}{c}1 \\
0
\end{array}\right); \left(\begin{array}{c}1 \\
1
\end{array}\right)\right\}$.

Then the matrix product codes of C_1, C_2 and A:

$C_A = [C_1C_2].A$

- $\left(\begin{array}{c}0 \\
0
\end{array}\right) \times A = \left(\begin{array}{c}0 \\
0
\end{array}\right) = (000, 000, 000, 000)$
- $\left(\begin{array}{c}0 \\
0
\end{array}\right) \times A = \left(\begin{array}{c}0 \\
0
\end{array}\right) = (000, 011, 000, 011)$
- $\left(\begin{array}{c}1 \\
0
\end{array}\right) \times A = \left(\begin{array}{c}1 \\
0
\end{array}\right) = (111, 000, 000, 000)$
- $\left(\begin{array}{c}1 \\
0
\end{array}\right) \times A = \left(\begin{array}{c}1 \\
0
\end{array}\right) = (111, 001, 000, 100)$
- $\left(\begin{array}{c}1 \\
1
\end{array}\right) \times A = \left(\begin{array}{c}1 \\
1
\end{array}\right) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$
Proposition 3.1. Let \(G_1, G_2, \ldots, G_s \) be the generator matrix of the code \(C_1, C_2, \ldots, C_s \) respectively and \(A = (a_{ij}) \in M(\mathbb{F}_q, s \times l) \). Then the generator matrix \(G \) of the matrix product code \(C = [C_1, C_2, \ldots, C_s]A \) is given by:

\[
G = \begin{pmatrix}
a_{11}G_1 & a_{12}G_1 & \cdots & a_{1l}G_1 \\
a_{21}G_2 & a_{22}G_2 & \cdots & a_{2l}G_2 \\
\vdots & \vdots & \ddots & \vdots \\
a_{sl}G_s & a_{s2}G_s & \cdots & a_{sl}G_s
\end{pmatrix}
\]

Proof. Let \(c \in C = [C_1, C_2, \ldots, C_s]A \), the matrix-product code \(C \) by definition is the set of all matrix product \(c = (c_1, c_2, \ldots, c_s)A \) where \(c_i \in C_i \), then:

\[
c = (c_1, c_2, \ldots, c_s)A = (c_1, c_2, \ldots, c_s) \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1l} \\
a_{21} & a_{22} & \cdots & a_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s1} & a_{s2} & \cdots & a_{sl}
\end{pmatrix}
\]

And the codewords can be viewed as vectors of length \(ml \),

\[
c = 2 \sum_{j=1}^{s} a_{j1}c_j, \quad \sum_{j=1}^{s} \sum_{j=1}^{s} a_{j2}c_j, \cdots, \sum_{j=1}^{s} a_{jlc_j} \in \mathbb{F}_q^{ml}
\] \hspace{1cm} (3.1)

or \(c_i \in C_i \), then \(c_1 = (u_1, u_2, \ldots, u_{k_1}), G_1 \), \(c_2 = (v_1, v_2, \ldots, v_{k_2}), G_2 \), \ldots, \(c_s = (h_1, h_2, \ldots, h_{k_s}), G_s \). If we replaced all \(c_i \) in (1) we have:

\[
c = \sum_{j=1}^{s} a_{j1}(u_1, u_2, \ldots, u_{k_j}), G_j, \quad \sum_{j=1}^{s} a_{j2}(u_1, u_2, \ldots, u_{k_j}), G_j, \cdots, \sum_{j=1}^{s} a_{jl}(u_1, u_2, \ldots, u_{k_j}), G_j
\]
We can write this expression in matrix form:

\[
c = (u_1, u_2, \ldots, u_{k_1}, v_1, v_2, \ldots, v_{k_2}, \ldots, h_1, h_2, \ldots, h_{k_s}).
\]

\[
\begin{pmatrix}
a_{11}G_1 & a_{12}G_1 & \cdots & a_{1l}G_1 \\
a_{21}G_2 & a_{22}G_2 & \cdots & a_{2l}G_2 \\
\vdots & \vdots & \ddots & \vdots \\
a_{s1}G_s & a_{s2}G_s & \cdots & a_{sl}G_s
\end{pmatrix}
\]

Therefore, the generator matrix \(G \) of the matrix product code \(C \)

\[
G = \begin{pmatrix} a_{11}G_1 & a_{12}G_1 & \cdots & a_{1l}G_1 \\ a_{21}G_2 & a_{22}G_2 & \cdots & a_{2l}G_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1}G_s & a_{s2}G_s & \cdots & a_{sl}G_s \end{pmatrix}
\]

\[\square\]

Proposition 3.2. Let \(C_i \) be a \([m, k_i, d_i]\) linear codes over \(\mathbb{F}_q \), \(i \in \{1, \ldots, s\} \) and \(A = (a_{ij}) \in M(\mathbb{F}_q, s \times l) \). Then the matrix product code \(C = [C_1, C_2, \ldots, C_s]A \) is a linear code over \(\mathbb{F}_q \) with length \(lm \) and dimension.

\[k < k_1 + k_2 + \cdots + k_s \quad (3.2) \]

If the matrix \(A \) has full rank the bound (2) is achieved, so the dimension of the matrix product code \(C = [C_1, C_2, \ldots, C_s]A \) is

\[k = k_1 + k_2 + \cdots + k_s \quad (3.3) \]

Proof. Let \(A = (a_{ij}) \in M(\mathbb{F}_q, s \times l) \) matrix with \(s \leq l \) which has full rank. Any codeword of \(C \) is of the form \(c = (c_1, c_2, \ldots, c_s)A \). Let us suppose that \((c_1, c_2, \ldots, c_s) \neq [0, 0, \ldots, 0] \) for \(i = 1, 2, \ldots, s \) and \(c_i \in C_i \). Since \(A \) has full rank and \(s \leq l \), then rank of \(A \) is equal to \(s \), then \(c = (c_1, c_2, \ldots, c_s)A \neq [0, 0, \ldots, 0] \). Therefore \(\#C = (\#C_1)(\#C_2)\cdots(\#C_s) = q^{k_1+k_2+\cdots+k_s}. \)

\[\square\]

Proposition 3.3. Let \(R_i = (a_{i1}, a_{i2}, \cdots, a_{il}) \) denote the \(i \)-row of the matrix \(A \) for \(i = 1, 2, \ldots, s \) and denote by \(D_i \) the minimum distance of the code \(C_{R_i} \) code generated by \(< R_1, \ldots, R_i > \) in \(\mathbb{F}_q^l \). In [6] the following lower bound for the minimum distance of the matrix product code \(C \) is obtained

\[d(C) = d = \min\{d_1D_1, d_2D_2, \cdots, d_sD_s\} \quad (3.4) \]

where \(d_i \) is the minimum distance of \(C_i \)

Proof. Demonstration of this proposition is given in [6]

\[\square\]

Lemma 3.4. If \(C_1, C_2, \ldots, C_s \) are nested codes \(C_1 \supset C_2 \supset \cdots \supset C_s \) the bound in (4) is sharp [3]

Proof. The proof of this lemma is given in [3]

\[\square\]
Example 3.5. If C_1, C_2 are two linear codes over \mathbb{F}_2, with generator matrices respectively G_1, G_2 and $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then the matrix-product code

$$C = [C_1, C_2].A = \{ (c_1 | c_1 + c_2) : c_1 \in C_1, c_2 \in C_2 \}$$

and the generator matrix G of the matrix product code C is $G = \begin{pmatrix} G_1 & G_1 \\ 0 & G_2 \end{pmatrix}$

Example 3.6. Consider the linear codes C_1, C_2, C_3 of length 3 over \mathbb{F}_3, with generator matrices respectively:

$$G_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

and $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Then the matrix-product code $C = [C_1, C_2, C_3].A$ is given by its matrix generator

$$G = \begin{pmatrix} G_1 & G_1 & G_1 \\ 0 & 2G_2 & G_2 \\ 0 & 0 & G_3 \end{pmatrix}$$

The parameters of these codes are $[3, 3, 1], [3, 2, 2]$, and $[3, 1, 3]$, respectively, and the codes are nested, the matrix-product code $C = [C_1, C_2, C_3].A$ is a $[9, 6, 3]$ linear code.

As conclusion of this work, we aim to study the matrix-product code and give some Bound on the parameters of the matrix-product code where the codes C_1, \cdots, C_s are linear and the matrix A has full rank.

References

2. Y. Fan; S. Ling; H. Liu; *Matrix product codes over finite commutative Frobenius rings*, (to appear in Des Codes Cryptogr). DOI: 10.1007/s10623-012-9726-y

