Gulf Journal of Mathematics
Vol 2, Issue 4 (2014) 87-93

FIXED POINT THEOREM FOR GENERALIZED CONTRACTIONS SATISFYING RATIONAL TYPE
EXPRESSIONS IN PARTIALLY ORDERED METRIC SPACES

SUMIT CHANDOK 1 *, T. D. NARANG 2 AND MOHAMED-AZIZ TAOUDI 3

ABSTRACT. In this paper, we prove a fixed point result for mappings satisfying a
generalized contractive condition of rational type in the framework of metric
spaces endowed with partial order. The proved result generalizes and extends
some known results in the literature.

1. INTRODUCTION AND PRELIMINARIES

The Banach contraction mapping is one of the most important results of analysis. It is a powerful tool for solving existence problems in different fields of mathematics. There are a lot of generalizations of the Banach contraction principle in the literature (see [1]-[13] and references cited therein).

Ran and Reurings [13] extended the Banach contraction principle in partially ordered sets with some applications to linear and nonlinear matrix equations. While Nieto and Rodríguez-López [12] extended the result of Ran and Reurings and applied their main theorems to obtain a unique solution for a first order ordinary differential equation with periodic boundary conditions. Bhaskar and LakshmiKantham [2] introduced the concept of mixed monotone mappings and obtained some coupled fixed point results. Also, they applied their results on a first order differential equation with periodic boundary conditions. Recently, many researchers have obtained fixed point, common fixed point results in partially ordered metric spaces.

In [11], Jaggi proved the following fixed point theorem.

Theorem 1.1. Let T be a continuous self map defined on a complete metric space
(X, d). Suppose that T satisfies the following contractive condition:

\[d(Tx, Ty) \leq \alpha \left(\frac{d(x, Tx)d(y, Ty)}{d(x, y)} \right) + \beta(d(x, y)) \] (1.1)

for all \(x, y \in X, x \geq y, x \neq y \) and for some \(\alpha, \beta, \in [0, 1) \) with \(\alpha + \beta < 1 \), then T has a unique fixed point in X.

Date: Received: Jul 12, 2013; Accepted: Jul 27, 2013.
* Corresponding author.
2010 Mathematics Subject Classification. 41A50, 47H10, 54H25.
Key words and phrases. fixed point, rational type contraction mappings, and ordered metric spaces.
Harjani et al. [10] extended the result of Jaggi [11] and established a fixed point result in partially ordered metric spaces.

The purpose of this paper is to establish fixed point results for mappings satisfying a generalized contraction condition of rational type in metric spaces endowed with partial order. Also, we establish a result for existence and uniqueness of fixed point for such class of mappings. As consequence of our results, we obtain some results for mappings involving contractions of integral type.

2. Main Results

Definition 2.1. Suppose \((X, \leq)\) is a partially ordered set and \(T : X \rightarrow X\). \(T\) is said to be **monotone nondecreasing** if for all \(x, y \in X\),

\[
x \leq y \implies Tx \leq Ty.
\] (2.1)

Theorem 2.2. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric \(d\) on \(X\) such that \((X, d)\) is a complete metric space. Suppose that \(T\) is a continuous self-mapping on \(X\), \(T\) is monotone nondecreasing mapping and

\[
d(Tx, Ty) \leq \alpha \left(\frac{d(x, Tx)d(y, Ty)}{d(x, y)} \right) + \beta(d(x, y)) + \gamma(d(x, Tx) + d(y, Ty)) + \delta(d(x, Ty) + d(y, Tx))
\] (2.2)

for all \(x, y \in X\), \(x \geq y\), \(x \neq y\) and for some \(\alpha, \beta, \gamma, \delta \in [0, 1)\) with \(\alpha+\beta+2\gamma+2\delta < 1\).

If there exists \(x_0 \in X\) with \(x_0 \leq Tx_0\), then \(T\) has a fixed point.

Proof. If \(Tx_0 = x_0\), then there is nothing to prove. Suppose that \(x_0 < Tx_0\). Since \(T\) is a monotone nondecreasing mapping, we obtain by induction that

\[
x_0 < Tx_0 \leq T^2x_0 \leq \ldots \leq T^nx_0 \leq T^{n+1}x_0 \leq \ldots
\] (2.3)

This gives a sequence \(\{x_n\}\) in \(X\) such that \(x_{n+1} = Tx_n\), for every \(n \geq 0\).

Since \(T\) is monotone nondecreasing mapping, we obtain

\[
x_0 \leq x_1 \leq x_2 \leq \ldots \leq x_n \leq x_{n+1} \leq \ldots
\]

If there exists \(n \geq 1\) such that \(x_{n+1} = x_n\), then from \(x_{n+1} = Tx_n = x_n\), \(x_n\) is a fixed point and the proof is finished. Suppose that \(x_{n+1} \neq x_n\) for all \(n \geq 1\).

Since \(x_n > x_{n-1}\), for all \(n \geq 1\), from (2.2), we have

\[
d(x_{n+2}, x_{n+1}) = d(Tx_{n+1}, Tx_n)
\]
\[
\leq \alpha \left(\frac{d(x_{n+1}, Tx_{n+1})d(x_n, Tx_n)}{d(x_{n+1}, x_n)} \right) + \beta(d(x_{n+1}, x_n)) + \gamma(d(x_{n+1}, Tx_{n+1}) + d(x_n, Tx_n)) + \delta(d(x_{n+1}, Tx_n) + d(x_n, Tx_{n+1}))
\]
\[
= \alpha \left(\frac{d(x_{n+1}, x_{n+2})d(x_n, x_{n+1})}{d(x_{n+1}, x_n)} \right) + \beta(d(x_{n+1}, x_n)) + \gamma(d(x_{n+1}, x_{n+2}) + d(x_n, x_{n+1})) + \delta(d(x_{n+1}, x_{n+1}) + d(x_n, x_{n+2}))
\]
\[
\leq \alpha(d(x_{n+1}, x_{n+2})) + \beta(d(x_{n+1}, x_n)) + \gamma(d(x_{n+1}, x_{n+2}) + d(x_n, x_{n+1})) + \delta(d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}))
\]
\[
= (\alpha + \gamma + \delta)d(x_{n+1}, x_{n+2}) + (\beta + \gamma + \delta)d(x_n, x_{n+1}),
\] (2.4)
which implies that

\[d(x_{n+2}, x_{n+1}) \leq \frac{(\beta + \gamma + \delta)}{1 - (\alpha + \gamma + \delta)} d(x_n, x_{n+1}). \quad (2.5) \]

Using, mathematical induction we have

\[d(x_{n+2}, x_{n+1}) \leq \left(\frac{(\beta + \gamma + \delta)}{1 - (\alpha + \gamma + \delta)} \right)^{n+1} d(x_1, x_0). \quad (2.6) \]

Put \(k = \frac{(\beta + \gamma + \delta)}{1 - (\alpha + \gamma + \delta)} < 1 \). We claim that \(\{x_n\} \) is a Cauchy sequence. For \(m \geq n \), we have

\[
\begin{align*}
 d(x_m, x_n) & \leq d(x_m, x_m-1) + d(x_m-1, x_m-2) + \ldots + d(x_{n+1}, x_n) \\
 & \leq (k^{m-1} + k^{m-2} + \ldots + k^n) d(x_1, x_0) \\
 & \leq \left(\frac{k^n}{1 - k} \right) d(x_1, x_0),
\end{align*}
\]

which implies that \(d(x_m, x_n) \to 0 \), as \(m, n \to \infty \). Thus \(\{x_n\} \) is a Cauchy sequence in a complete metric space \(X \) and so there exists \(u \in X \) such that \(\lim x_n = u \).

By the continuity of \(T \), we have

\[Tu = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} x_{n+1} = u. \]

Hence \(u \) is a fixed point of \(T \).

\[\square \]

Example 2.3. Let \(X = \{(0,1), (1,0), (1,1)\} \subset \mathbb{R}^2 \) with the Euclidean distance \(d_2 \). \((X, d_2) \) is, obviously, a complete metric space. Moreover, we consider in \(X \) the partial order given by \(R = \{(x,x) : x \in X\} \cup \{((0,1), (1,1))\} \). Let \(T : X \to X \) be given by \(T(0,1) = (0,1), T(1,0) = (1,0) \) and \(T(1,1) = (0,1) \). Obviously, \(T \) is continuous and non-decreasing mapping since \((0,1) \leq (1,1) \) and \(T(0,1) = (0,1) \leq T(1,1) = (0,1) \). Let \(x \geq y \) and \(x \neq y \), then necessarily \(x = (1,1) \) and \(y = (0,1) \) and it satisfies the contractive condition (2.2) i.e. \(d(Tx, Ty) = 0 \) and \(\alpha \left(\frac{d(x, Tx)d(y, Ty)}{d(x, y)} \right) + \beta d(x, y) + \gamma [d(x, Tx) + d(y, Ty)] + \delta [d(x, Ty) + d(y, Tx)] = (\beta + \gamma + \delta) \). Also, \((0,1) \leq T(0,1), \) so all the conditions of Theorem 2.2 hold and \((0,1) \) and \((1,0) \) are fixed points of \(T \).

In what follows, we prove that Theorem 2.2 is still valid for \(T \), not necessarily continuous, assuming the following hypothesis in \(X \):

If \(\{x_n\} \) is a non-decreasing sequence in \(X \) such that \(x_n \to x \), then \(x = \sup \{x_n\} \)

Theorem 2.4. Let \((X, \leq) \) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d) \) is a complete metric space. Suppose that \(T \) is a self-mapping on \(X \), \(T \) is a monotone nondecreasing mapping and

\[
 d(Tx, Ty) \leq \alpha \left(\frac{d(x, Tx)d(y, Ty)}{d(x, y)} \right) + \beta d(x, y) + \\
 \gamma (d(x, Tx) + d(y, Ty)) + \delta (d(x, Ty) + d(y, Tx)) \quad (2.8)
\]

for all \(x, y \in X \), \(x \geq y \), \(x \neq y \) and for some \(\alpha, \beta, \gamma, \delta \in [0, 1) \) with \(\alpha + \beta + 2\gamma + 2\delta < 1 \).
Assume that \(\{x_n\} \) is a non-decreasing sequence in \(X \) such that \(x_n \to x \), then \(x = \sup \{x_n\} \). If there exists \(x_0 \in X \) with \(x_0 \leq Tx_0 \), then \(T \) has a fixed point.

Proof. Following the proof of Theorem 2.2, we have \(\{x_n\} \) is a Cauchy sequence. Since \(\{x_n\} \) is a non-decreasing sequence in \(X \) such that \(x_n \to u \), then \(u = \sup \{x_n\} \). Particularly, \(x_n \leq u \) for all \(n \in \mathbb{N} \).

Since \(T \) is a monotone nondecreasing mapping \(Tx_n \leq Tu \), for all \(n \in \mathbb{N} \) or, equivalently, \(x_{n+1} \leq Tu \), for all \(n \in \mathbb{N} \). Moreover, as \(x_n < x_{n+1} \leq Tu \) and \(u = \sup \{x_n\} \), we get \(u \leq Tu \).

Construct a sequence \(\{y_n\} \) as \(y_0 = u \), \(y_{n+1} = Ty_n \), for all \(n \geq 0 \). Since \(y_0 \leq Ty_0 \), arguing as above, we obtain that \(\{y_n\} \) is a non-decreasing sequence and \(\lim_{n \to \infty} y_n = y \) for certain \(y \in X \), so we have \(y = \sup \{y_n\} \). Since \(x_n \leq u = y_0 \leq Tx = Ty_0 \leq y_n \leq y \), for all \(n \), using (2.8), we have

\[
d(x_{n+1}, y_{n+1}) = d(Tx_n, Ty_n)
\leq \alpha \left(\frac{d(x_n, Tx_n)d(y_n, Ty_n)}{d(x_n, y_n)} \right) + \beta(d(x_n, y_n)) + \\
\gamma (d(x_n, Tx_n) + d(y_n, Ty_n)) + \delta (d(x_n, Ty_n) + d(y_n, Tx_n))
\]

\[
= \alpha \left(\frac{d(x_n, x_{n+1})d(y_n, y_{n+1})}{d(x_n, y_n)} \right) + \beta(d(x_n, y_n)) + \\
\gamma (d(x_n, x_{n+1}) + d(y_n, y_{n+1})) + \delta (d(x_n, y_{n+1}) + d(y_n, x_{n+1})).
\]

Letting \(n \to \infty \), we have \(d(u, y) \leq (\beta + 2\delta)d(u, y) \). As \((\beta + 2\delta) < 1 \), we have \(d(u, y) = 0 \). Particularly, \(u = y = \sup \{y_n\} \), and consequently, \(u \leq Tu \leq u \).

Hence we conclude that \(u \) is a fixed point of \(T \).

\(\square \)

Now, we shall prove the uniqueness of the fixed point.

Theorem 2.5. In addition to the hypotheses of Theorem 2.2 (or Theorem 2.4), suppose that for every \(x, y \in X \), there exists \(z \in X \) that is comparable to \(x \) and \(y \), then \(T \) has a unique fixed point.

Proof. From Theorem 2.2 (or Theorem 2.4), the set of fixed points of \(T \) is non-empty. Suppose that \(x, y \in X \) are two fixed points of \(T \). We distinguish two cases:

Case 1. If \(x \) and \(y \) are comparable and \(x \neq y \), then using (2.2), we have

\[
d(x, y) = d(Tx, Ty)
\leq \alpha \left(\frac{d(x, Tx)d(y, Ty)}{d(x, y)} \right) + \beta(d(x, y)) + \\
\gamma (d(x, Tx) + d(y, Ty)) + \delta (d(x, Ty) + d(y, Tx))
\]

\[
= \alpha \left(\frac{d(x, x)d(y, y)}{d(x, y)} \right) + \beta(d(x, y)) + \\
\gamma (d(x, x) + d(y, y)) + \delta (d(x, y) + d(y, x))
\]

which implies that \(d(x, y) = 0 \), as \(\beta + 2\delta < 1 \). Hence \(x = y \).

Case 2. If \(x \) is not comparable to \(y \), there exists \(z \in X \) that is comparable to \(x \) and \(y \). Monotonicity implies that \(T^n z \) is comparable to \(T^n x = x \) and \(T^n y = y \) for
n = 0, 1, 2, If there exists \(n_0 \geq 1 \) such that \(T^{n_0}z = x \), then as \(x \) is a fixed point, the sequence \(\{T^n z : n \geq n_0\} \) is constant, and, consequently, \(\lim_{n \to \infty} T^n z = x \).

On the other hand, if \(T^n z \neq x \) for \(n \geq 1 \), using the contractive condition, we obtain, for \(n \geq 2 \),

\[
d(T^n z, x) = d(T^n z, T^n x) \\
\leq \alpha \left(\frac{d(T^{n-1} x, T^n x)d(T^{n-1} z, T^n z)}{d(T^{n-1} x, T^{n-1} z)} \right) + \beta \left(d(T^{n-1} x, T^{n-1} z) \right) + \\
\gamma \left(d(T^{n-1} x, T^n x) + d(T^{n-1} z, T^n z) \right) + \delta \left(d(T^{n-1} x, T^n z) + d(T^{n-1} z, T^n x) \right) \\
= \alpha \left(\frac{d(x, x)d(T^{n-1} z, T^n z)}{d(x, T^{n-1} z)} \right) + \beta \left(d(x, T^{n-1} z) \right) + \\
\gamma \left(d(x, x) + d(T^{n-1} z, T^n z) \right) + \delta \left(d(x, T^n z) + d(T^{n-1} z, x) \right) \\
\leq \beta \left(d(x, T^{n-1} z) \right) + \gamma \left(d(x, T^{n-1} z) + d(x, T^n z) \right) + \delta \left(d(x, T^n z) + d(T^{n-1} z, x) \right) \\
= (\beta + \gamma + \delta) \left(d(x, T^{n-1} z) \right) + (\gamma + \delta) d(x, T^n z),
\]

which implies that \(d(T^n z, x) \leq \frac{\delta + \gamma + \delta}{1 - (\gamma + \delta)} d(T^{n-1} z, x) \). Using mathematical induction, we have \(d(T^n z, x) \leq \left(\frac{\beta + \gamma + \delta}{1 - (\gamma + \delta)} \right)^n d(z, x) \), for \(n \geq 2 \), and as \(\frac{\beta + \gamma + \delta}{1 - (\gamma + \delta)} < 1 \), we have \(\lim_{n \to \infty} T^n z = x \).

Using a similar argument, we can prove that \(\lim_{n \to \infty} T^n z = y \). Now, the uniqueness of the limit implies \(x = y \). Hence \(T \) has a unique fixed point.

\[\square\]

Remark 2.6. If \(\gamma = 0 = \delta \) in Theorems 2.2, 2.4 and 2.5, then we have the Theorems 2.2, 2.3 and 2.4 of Harjani, Lopez and Sadarangani [10].

Other consequences of our results are the following for the mappings involving contractions of integral type.

Denote by \(\Lambda \) the set of functions \(\mu : [0, \infty) \to [0, \infty) \) satisfying the following hypotheses:

(\text{h1}) \(\mu \) is a Lebesgue-integrable mapping on each compact subset of \([0, \infty) \);

(\text{h2}) for any \(\epsilon > 0 \), we have \(\int_0^\epsilon \mu(t)dt > 0 \).

Corollary 2.7. Let \((X, \leq) \) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Suppose that \(T \) is a continuous self-mapping on \(X \), \(T \) is monotone nondecreasing mapping and

\[
\int_0^\infty d(Tx, Ty) \psi(t)dt \leq \alpha \int_0^\infty \frac{d(x, Tx)d(y, Ty)}{d(x, y)} \psi(t)dt + \beta \int_0^\infty d(x, y) \psi(t)dt \\
+ \gamma \int_0^\infty d(x, Tx) + d(y, Ty) \psi(t)dt + \delta \int_0^\infty d(x, Ty) + d(y, Tx) \psi(t)dt
\]

for all \(x, y \in X \) for which \(x \) and \(y \) are comparable, \(\psi \in \Lambda \) and for some \(\alpha, \beta, \gamma, \delta \in [0, 1) \) with \(\alpha + \beta + 2\gamma + 2\delta < 1 \).

If there exists \(x_0 \in X \) with \(x_0 \leq Tx_0 \), then \(T \) has a fixed point.
Corollary 2.8. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric \(d\) on \(X\) such that \((X, d)\) is a complete metric space. Suppose that \(T\) is a self-mapping on \(X\), \(T\) is monotone nondecreasing mapping and

\[
\int_0^d(Tx, Ty) \psi(t) dt \leq \alpha \int_0^{d(x, Tx) + d(y, Ty)} \psi(t) dt + \beta \int_0^{d(x, y)} \psi(t) dt + \gamma \int_0^{d(x, Tx) + d(y, Ty)} \psi(t) dt + \delta \int_0^{d(x, y)} \psi(t) dt
\]

for all \(x, y \in X\) for which \(x\) and \(y\) are comparable, \(\psi \in \Lambda\) and for some \(\alpha, \beta, \gamma, \delta \in [0, 1)\) with \(\alpha + \beta + 2\gamma + 2\delta < 1\).

Assume that \(\{x_n\}\) is a non-decreasing sequence in \(X\) such that \(x_n \to x\), then \(x = \sup \{x_n\}\).

If there exists \(x_0 \in X\) with \(x_0 \leq Tx_0\), then \(T\) has a fixed point.

References

8. S. Chandok, Common fixed points for generalized nonlinear contractive mappings in metric spaces, Mat. Vesnik 65 (1)(2013), 29-34.

1 Department of Mathematics, Khalsa College of Engineering & Technology (Punjab Technical University), Ranjit Avenue, Amritsar-143001, India.

E-mail address: chansok.s@gmail.com ; chandhok.sumit@gmail.com
2 Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India.
 E-mail address: tdnarang1948@yahoo.co.in

3 Université Cadi Ayyad, Centre Universitaire Polydisciplinaire de Kalaa des Srargna, Kalaa des Srargna, Morocco
 E-mail address: mataoudi@gmail.com; a.taoudi@uca.ma