SUBMANIFOLDS OF SOME INDEFINITE CONTACT AND PARACONTACT MANIFOLDS

BARNALI LAHA1, BANDANA DAS2 AND ARINDAM BHATTACHARYYA3

Abstract. The purpose of the present paper is to study some types of submanifolds of indefinite contact and paracontact manifolds and a few properties of contact CR-submanifolds of an indefinite Sasakian manifold, indefinite Kenmotsu manifold, indefinite trans-Sasakian manifold and ϵ-paracontact Sasakian manifold.

1. Introduction and preliminaries

Submanifolds of cosymplectic manifolds were discussed by G.D. Ludden in 1970 [9]. After him, B.Y. Chen studied geometry of submanifolds in [5]. B.Y. Chen and K. Ogiue in 1974 have given the notion of totally real submanifolds and differential geometry of Kaehler submanifolds (see [6], [11]). Blair and Shower introduced an almost contact manifold ([3], [4]). M. Kon and K. Yano investigated invariant and anti-invariant submanifolds in [8] and [13]. Later on, A. Bejancu in 1978 and 1979 introduced the notion of CR-submanifolds of a Kaehlerian manifold (see [1], [2]). M. Kobayashi discussed CR-submanifolds of a Sasakian manifold in 1981 [7]. Topology of 3-cosymplectic manifolds was discussed by B.C. Montano in [10]. Recently, in 2010 M. Tarafdar et.al. studied contact CR-submanifolds of an indefinite Sasakian manifold [12].

In this paper we study some types of submanifolds of some indefinite contact and paracontact manifolds and further make an analysis of the properties of contact CR-submanifolds of an indefinite Sasakian manifold, indefinite Kenmotsu manifold, indefinite trans-Sasakian manifold and ϵ-paracontact Sasakian manifold.

Definition 1.1. An $(2n+1)$-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be an indefinite almost contact manifold if it admits an indefinite almost contact structure (ϕ, ξ, η), where ϕ is a tensor field of type $(1, 1)$, ξ is a vector field and η is a 1-form, satisfying

\[\phi^2 X = -X + \eta(X)\xi, \quad \eta \circ \phi = 0, \quad \phi \xi = 0, \quad \eta(\xi) = 1, \]

(1.1)

\begin{itemize}
\item Date: Received: Jul 11, 2013; Accepted: Sep 2, 2013.
\item 2010 Mathematics Subject Classification. 53C12, 53C15, 22E25, 53C40, 53C50.
\item Key words and phrases. Indefinite cosymplectic manifold, indefinite Sasakian manifold, indefinite Kenmotsu manifold, ϵ-paracontact Sasakian manifold, anti invariant distribution D^\perp.
\end{itemize}
\[\tilde{g}(\phi X, \phi Y) = \tilde{g}(X, Y) - \epsilon \eta(X)\eta(Y), \quad (1.2) \]

\[\tilde{g}(X, \xi) = \epsilon \eta(X), \quad (1.3) \]

for all vector fields \(X, Y \) on \(\tilde{M} \) and where \(\epsilon = \tilde{g}(\xi, \xi) = \pm 1 \) and \(\tilde{\nabla} \) is the Levi-Civita (L-C) connection for a semi-Riemannian metric \(\tilde{g} \).

Definition 1.2. An almost contact structure \((\phi, \xi, \eta)\) is said to be normal if the almost complex structure \(J \) on the product manifold \(\tilde{M} \times \mathbb{R} \) is given by

\[J(X, f \frac{d}{dt}) = (\phi X - f \xi, \eta(X)\frac{d}{dt}), \quad (1.4) \]

where \(f \) is a \(C^\infty \)-function on \(\tilde{M} \times \mathbb{R} \) having no torsion, i.e., \(J \) is integrable, the condition for normality in terms of \(\phi, \xi \) and \(\eta \) is \([\phi, \phi] + 2d\eta \otimes \xi = 0 \) on \(\tilde{M} \), where \([\phi, \phi] \) is the Nijenhuis tensor of \(\phi \).

Lastly, the fundamental 2-form \(\Phi \) is defined by

\[\Phi(X, Y) = \tilde{g}(X, \phi Y). \quad (1.5) \]

Definition 1.3. An indefinite almost contact metric structure \((\phi, \xi, \eta, \tilde{g})\) is said to be indefinite cosymplectic structure, if it is normal and both \(\Phi \) and \(\eta \) are closed which is characterized by

\[\tilde{\nabla}_X \phi = 0, \quad \tilde{\nabla}_X \eta = 0. \quad (1.6) \]

Now we define contact CR-submanifold of an indefinite cosymplectic manifold.

Definition 1.4. An \(m \)-dimensional Riemannian submanifold \(M \) of an indefinite cosymplectic manifold \(\tilde{M} \) is called a contact CR-submanifold if

1. \(\xi \) is tangent to \(M \),
2. there exists on \(M \) a differentiable distribution \(D : x \rightarrow D_x \subset T_x(M) \), such that \(D_x \) is invariant under \(\phi \); i.e., \(\phi D_x \subset D_x \), for each \(x \in M \) and the orthogonal complementary distribution \(D^\perp : x \rightarrow D^\perp_x \subset T_x(M) \) of the distribution \(D \) on \(M \) is totally real; i.e., \(\phi D^\perp_x \subset T^\perp_x(M) \), where \(T_x(M) \) and \(T^\perp_x(M) \) are the tangent space and the normal space of \(M \) at \(x \).

We call \(D \) (resp. \(D^\perp \)) the horizontal (resp. vertical) distribution. Also the contact CR-submanifold of an indefinite cosymplectic manifold is called \(\xi \)-horizontal (resp. \(\xi \)-vertical) if \(\xi_x \in D_x \) (resp. \(\xi_x \in D^\perp_x \)) for each \(x \in M \) by [7]. The distribution \(D \) (resp. \(D^\perp \)) can be defined by a projector \(P \) (resp. \(Q \)), satisfying

\[P^2 = P, \quad Q^2 = Q, \quad PQ = QP = 0, \quad g \circ (P \times Q) = 0. \quad (1.7) \]

For a vector field \(X \) tangent to \(M \), we write

\[\phi X = PX + QX, \quad (1.8) \]

where \(PX \) (resp. \(QX \)) is a tangential (resp. normal) component of \(\phi X \).
Again we write
\[\phi N = BN + CN, \] (1.9)
for a vector field \(N \) in the normal bundle, where \(BN \) (resp. \(CN \)) is a tangential (resp. normal) component of \(\phi N \). The Gauss and Weingarten formulae are given by
\[\nabla_X Y = \nabla_X Y + h(X, Y), \] (1.10)
\[\nabla_X N = -A_N X + \nabla^\perp_X N, \] (1.11)
where \(\nabla \) is the Riemannian connection on \(M \) and \(\nabla^\perp \) is the connection on the normal bundle induced by \(\nabla \) and \(h \) is the second fundamental form of the immersion, satisfying the condition
\[g(A_N X, Y) = g(h(X, Y), N). \] (1.12)

Definition 1.5. A submanifold \(M \) of a Riemannian manifold \(\tilde{M} \) is said to be totally umbilical if
\[h(X, Y) = g(X, Y) H, \] (1.13)
where \(H \) is the mean curvature vector.

Definition 1.6. An indefinite almost contact metric structure \((\phi, \xi, \eta, \tilde{g})\) is called an indefinite Sasakian structure if
\[(\tilde{\nabla}_Z \phi) W = \epsilon \eta(W) Z - g(Z, W) \xi, \] (1.14)

Definition 1.7. An indefinite almost contact metric structure \((\phi, \xi, \eta, \tilde{g})\) is called an Kenmotsu structure if
\[(\tilde{\nabla}_Z \phi) W = g(\phi Z, W) \xi - \epsilon \eta(W) \phi Z, \] (1.15)

Definition 1.8. An indefinite almost contact metric structure \((\phi, \xi, \eta, \tilde{g})\) is called an indefinite trans-Sasakian structure if
\[(\tilde{\nabla}_Z \phi) W = \alpha [g(Z, W) \xi - \epsilon \eta(W) Z] + \beta [g(\phi Z, W) \xi - \epsilon \eta(W) \phi Z] \] (1.16)
for functions \(\alpha \) and \(\beta \) on \(\tilde{M} \) of type \((\alpha, \beta)\),

Definition 1.9. An indefinite almost contact metric structure \((\phi, \xi, \eta, \tilde{g})\) is called an \(\epsilon \)-paracontact Sasakian structure if
\[(\tilde{\nabla}_Z \phi) W = -g(\phi Z, \phi W) \xi - \epsilon \eta(W) \phi^2 Z, \] (1.17)
for all vector fields \(Z, W \) in respective \(\tilde{M} \).
2. Contact CR-submanifold of an indefinite Sasakian manifold

Here we consider a contact CR-submanifold M of an indefinite Sasakian manifold \tilde{M}. Then we prove the following theorem and corollary:

Theorem 2.1. Let M be a totally umbilical contact CR-submanifold of an indefinite Sasakian manifold \tilde{M}. Then the anti invariant distribution D^\perp is one dimensional i.e. $\dim D^\perp = 1$.

Proof. For an indefinite Sasakian structure we have

$$ (\tilde{\nabla}_Z\phi)W = \epsilon\eta(W)Z - g(Z,W)\xi. \quad (2.1) $$

Also we know

$$ \tilde{\nabla}_Z\phi W = (\tilde{\nabla}_Z\phi)W + \phi\tilde{\nabla}_Z W. \quad (2.2) $$

From (2.1) and (2.2) we get

$$ \tilde{\nabla}_Z\phi W = \phi\tilde{\nabla}_Z W + \epsilon\eta(W)Z - g(Z,W)\xi. \quad (2.3) $$

Since M is totally umbilical, by Weingarten and Gauss formula we have

$$ \nabla^\perp_Z\phi W - g(H,\phi W)Z = \phi[\nabla_Z W + g(Z,W)H] + \epsilon\eta(W)Z - g(Z,W)\xi \quad (2.4) $$

for any $Z, W \in \Gamma(D^\perp)$.

Taking inner product with $Z \in \Gamma(D^\perp)$ in (2.4) we obtain

$$ -g(H,\phi W)||Z||^2 = g(Z,W)g(\phi H, Z) + \epsilon\eta(W)||Z||^2 - g(Z,W)\epsilon\eta(Z). \quad (2.5) $$

Interchanging Z and W we have

$$ -g(H,\phi Z)||W||^2 = g(W,Z)g(\phi H, W) + \epsilon\eta(Z)||W||^2 - g(W,Z)\epsilon\eta(W). \quad (2.6) $$

Substituting (2.5) in (2.6) and simplifying we have

$$ g(H,\phi Z)[1 - \frac{g(Z,W)^2}{||Z||^2||W||^2}] + \epsilon\eta(Z)[1 - \frac{g(Z,W)^2}{||Z||^2||W||^2}] = 0. \quad (2.7) $$

The equation (2.7) has a solution if $Z \parallel W$ i.e. $\dim D^\perp = 1$. Hence the theorem is proved. \square

Corollary 2.2. A contact CR-submanifold of an indefinite Sasakian manifold reduces to a cosymplectic manifold provided the vector field Z becomes the structure vector field ξ.

Proof. In a contact CR-submanifold of an indefinite Sasakian manifold we have

$$ (\tilde{\nabla}_Z\phi)W = \epsilon\eta(W)Z - g(Z,W)\xi. \quad (2.8) $$

Taking inner product with Z and using (1.3) in (2.8) we obtain

$$ (\tilde{\nabla}_Z\phi)W = \epsilon\eta(W)g(Z, Z) - \epsilon\eta(Z)g(Z, W). \quad (2.9) $$

The equation vanishes provided $Z = \xi$ and therefore the contact CR-submanifold reduces to a cosymplectic manifold. \square
3. Contact CR-submanifold of an indefinite Kenmotsu manifold

In this section we take a contact CR-submanifold M of an indefinite Kenmotsu manifold \tilde{M}. Then we obtain the following theorem and corollary:

Theorem 3.1. Let M be a totally umbilical contact CR-submanifold of an indefinite Kenmotsu manifold \tilde{M}. Then the anti invariant distribution D^\perp is one dimensional i.e. $\dim D^\perp=1$.

Proof. From (1.15) and (2.2) we get

$$\tilde{\nabla}_Z\phi W = \phi\tilde{\nabla}_Z W + g(\phi Z, W)\xi - \epsilon\eta(W)\phi Z.$$ \hspace{1cm} (3.1)

Since M is totally umbilical, by Weingarten and Gauss formula we have

$$\nabla^*_Z\phi W - g(H, \phi W)Z = \phi[\nabla Z W + g(Z, W)H] + g(\phi Z, W)\xi - \epsilon\eta(W)\phi Z$$ \hspace{1cm} (3.2)

for any $Z, W \in \Gamma(D^\perp)$.

Taking inner product with $Z \in \Gamma(D^\perp)$ in (3.2) we have

$$g(H, \phi W)\|Z\|^2 = g(Z, W)g(H, \phi Z) + \epsilon\eta(W)g(\phi Z, Z) - g(\phi Z, W)\epsilon\eta(Z).$$ \hspace{1cm} (3.3)

Interchanging Z and W we have

$$g(H, \phi Z)\|W\|^2 = g(W, Z)g(H, \phi W) + \epsilon\eta(Z)g(\phi W, W) - g(\phi W, Z)\epsilon\eta(W).$$ \hspace{1cm} (3.4)

Substituting (3.3) in (3.4) and after a brief calculation we have

$$g(H, \phi W)[1 - \frac{g(Z, W)^2}{\|Z\|^2\|W\|^2}] + \frac{\epsilon}{\|Z\|^2\|W\|^2}[g(\phi Z, W)\eta(Z) - g(\phi Z, Z)\eta(W)] +$$

$$\frac{\epsilon g(Z, W)}{\|Z\|^2\|W\|^2}[\eta(W)g(\phi W, Z) - \eta(Z)g(\phi W, W)] = 0.$$ \hspace{1cm} (3.5)

The Equation (3.5) has a solution if $Z \parallel W$ i.e. $\dim D^\perp=1$. Hence the theorem.

Corollary 3.2. A contact CR-submanifold of an indefinite Kenmotsu manifold reduces to a cosymplectic manifold if vector field Z becomes the structure vector field ξ.

Proof. Taking inner product with Z in the equation (1.15) and using (1.3) we obtain

$$(\tilde{\nabla}_Z\phi)W = g(\phi Z, W)\epsilon\eta(Z) - \epsilon\eta(W)g(\phi Z, Z).$$ \hspace{1cm} (3.6)

The equation vanishes provided $Z = \xi$ and hence the contact CR-submanifold reduces to a cosymplectic manifold.

\hspace{1cm} \square

4. Contact CR-submanifold of an indefinite trans-Sasakian manifold

We consider a contact CR-submanifold M of an indefinite trans-Sasakian manifold \tilde{M}. Then we obtain the following theorem and corollary.
Theorem 4.1. Let M be a totally umbilical contact CR-submanifold of an indefinite trans-Sasakian manifold \tilde{M}. Then the anti invariant distribution D^\perp is one dimensional i.e. $\dim D^\perp = 1$.

Proof. Using equations (1.16) and (2.2) we get

$$\tilde{\nabla}_Z \phi W = \alpha [g(Z,W)\xi - \epsilon_\eta(W)Z] + \beta [g(\phi Z,W)\xi - \epsilon_\eta(W)\phi Z] + \phi \tilde{\nabla}_Z W. \quad (4.1)$$

Since M is totally umbilical, by Weingarten and Gauss formula we have

$$\nabla^\perp_Z \phi W - g(H,\phi W)Z = \alpha g(Z,W)\xi - \alpha \epsilon_\eta(W)Z + \beta g(\phi Z,W)\xi - \beta \epsilon_\eta(W)\phi Z + \phi \nabla^\perp_Z W + g(Z,W)\phi H \quad (4.2)$$

for any $Z, W \in \Gamma(D^\perp)$. Taking inner product with $Z \in \Gamma(D^\perp)$ in Equation (4.2) we have

$$-g(H,\phi W)g(Z,Z) = \alpha g(Z,W)\epsilon_\eta(Z) - \alpha \epsilon_\eta(Z)g(Z,Z) + \beta g(\phi Z,W)\epsilon_\eta(Z) - \beta \epsilon_\eta(Z)g(\phi Z,Z) + g(Z,W)g(\phi H,Z). \quad (4.3)$$

Interchanging Z and W we have

$$-g(H,\phi Z)||W||^2 = \alpha g(W,Z)\epsilon_\eta(W) - \alpha \epsilon_\eta(Z)||W||^2 + \beta g(\phi W,Z)\epsilon_\eta(W) - \beta \epsilon_\eta(Z)g(\phi W,W) + g(W,Z)g(\phi H,W). \quad (4.4)$$

$$g(H,\phi Z) = -\frac{\alpha g(W,Z)\epsilon_\eta(W)}{||W||^2} + \alpha \epsilon_\eta(Z) - \frac{\beta g(\phi W,Z)\epsilon_\eta(W)}{||W||^2} + \frac{\beta \epsilon_\eta(Z)g(\phi W,W)}{||W||^2} + \frac{g(W,Z)g(H,\phi W)}{||W||^2}. \quad (4.5)$$

Substituting Equation (4.3) in Equation (4.5) we have after some steps of calculations

$$g(H,\phi Z) = -\frac{\alpha g(W,Z)\epsilon_\eta(W)}{||W||^2} + \alpha \epsilon_\eta(Z) - \frac{\beta g(\phi W,Z)\epsilon_\eta(W)}{||W||^2} + \frac{\beta \epsilon_\eta(Z)g(\phi W,W)}{||W||^2} + \frac{g(W,Z)g(H,\phi W)}{||W||^2} - \frac{\alpha g(Z,W)\epsilon_\eta(Z)}{||Z||^2} + \alpha \epsilon_\eta(W) - \frac{\beta g(\phi Z,W)\epsilon_\eta(Z)}{||Z||^2} + \frac{\beta \epsilon_\eta(W)g(\phi Z,Z)}{||Z||^2} - \frac{g(Z,W)g(\phi H,Z)}{||Z||^2}. \quad (4.6)$$
\[g(H, \phi Z)[1 - \frac{g(Z, W)^2}{||Z||^2 ||W||^2}] - \alpha \epsilon \eta(Z)[1 - \frac{g(Z, W)^2}{||Z||^2 ||W||^2}] - \frac{\beta g(\phi Z, W) \epsilon}{||W||^2} [\eta(W) - \frac{\eta(Z) g(Z, W)}{||Z||^2} - \frac{\beta \epsilon}{||W||^2} [\eta(Z) g(\phi W, W) - \frac{\eta(W) g(\phi Z, Z) g(W, Z)}{||Z||^2}] = 0. \]

(4.7)

The equation Equation (4.7) has a solution if \(Z \parallel W \) i.e. \(\text{dim} D^\perp = 1 \). Hence the proof is complete.

Corollary 4.2. A contact CR-submanifold of an indefinite trans-Sasakian manifold reduces to a cosymplectic manifold when the vector field \(Z \) becomes the structure vector field \(\xi \).

Proof. Taking inner product with \(Z \) in the equation (1.16) and using (1.3) we obtain

\[(\nabla_Z \phi) W = \epsilon \eta(Z) [\alpha g(Z, W) + \beta g(\phi Z, W)] - \epsilon \eta(W) [\alpha ||Z||^2 + \beta g(\phi Z, Z)]. \]

(4.8)

The equation vanishes provided \(Z = \xi \) and thus this contact CR-submanifold reduces to a cosymplectic manifold.

This is an example of a trans-Sasakian manifold, which proves the above corollory.

Example 4.3. Let \(R^3 \) be a 3-dimensional Euclidean space with rectangular coordinates \((x, y, z)\). In \(R^3 \) we define

\[\eta = dz - ydx, \xi = \frac{\partial}{\partial z}, \]

(4.9)

\[\phi(\frac{\partial}{\partial x}) = \frac{\partial}{\partial y}, \phi(\frac{\partial}{\partial y}) = -\frac{\partial}{\partial x} - y \frac{\partial}{\partial z}, \phi(\frac{\partial}{\partial z}) = 0. \]

(4.10)

The Riemannian metric \(g \) is defined by the matrix:

\[
\begin{bmatrix}
\epsilon y^2 & 0 & -\epsilon y \\
0 & 0 & 0 \\
-\epsilon y & 0 & \epsilon
\end{bmatrix}
\]

Then it can be easily seen that \((\phi, \xi, \eta, g)\) forms an indefinite trans-Sasakian structure in \(R^3 \) for some functions \(\alpha \) and \(\beta \) and it reduces to a cosymplectic manifold when \(Z = \xi \). The corollary (3.1) can be verified by assuming \(\alpha = 0 \) and \(\beta = 1 \).

5. **Contact CR-submanifold of an epsilon-paracontact Sasakian manifold**

In this section we consider a contact CR-submanifold \(M \) of an \(\epsilon \)-paracontact Sasakian manifold \(\tilde{M} \). Then we get the following theorem and corollary.
Theorem 5.1. Let M be a totally umbilical contact CR-submanifold of an ϵ-paracontact Sasakian manifold \tilde{M}. Then the anti invariant distribution D^\perp is one dimensional i.e. $\dim D^\perp=1$.

Proof. Substituting (1.17) in (2.2) we have
\begin{equation}
\tilde{\nabla}_Z\phi W = \phi \tilde{\nabla}_Z W - g(\phi Z, \phi W)\xi - \epsilon\eta(W)\phi^2 Z.
\end{equation}
Since M is totally umbilical by Weingarten and Gauss formula we have
\begin{equation}
\nabla^\perp_Z\phi W - g(H, \phi W)Z = \phi[\nabla_Z W + g(Z, W)H] - g(\phi Z, \phi W)\xi - \epsilon\eta(W)\phi^2 Z
\end{equation}
for any $Z, W \in \Gamma(D^\perp)$. Taking inner product with $Z \in \Gamma(D^\perp)$ in (5.2) we have
\begin{equation}
g(H, \phi W)||Z||^2 = g(W, Z)g(H, \phi W) - \epsilon\eta(Z)||W||^2 + g(Z, W)\epsilon\eta(W).
\end{equation}
Interchanging Z and W we have
\begin{equation}
g(H, \phi Z)||W||^2 = g(W, Z)g(H, \phi W) - \epsilon\eta(Z)||W||^2 + g(Z, W)\epsilon\eta(W).
\end{equation}
Substituting (5.3) in (5.4) and simplifying we have
\begin{equation}
g(H, \phi Z)[1 - \frac{g(Z, W)^2}{||Z||^2||W||^2}] + \epsilon\eta(Z)[1 - \frac{g(Z, W)^2}{||Z||^2||W||^2}] = 0.
\end{equation}
The equation (5.5) has a solution if $Z \parallel W$ i.e. $\dim D^\perp=1$. Hence the proof follows.

Corollary 5.2. A contact CR-submanifold of an ϵ-paracontact Sasakian manifold reduces to a cosymplectic manifold if the vector field Z becomes the structure vector field ξ.

Proof. Taking inner product with Z in equation (1.17) and using (1.3) we get
\begin{equation}
(\nabla_Z\phi)W = -g(\phi Z, \phi W)\epsilon\eta(Z) - \epsilon\eta(W)g(\phi^2 Z, Z).
\end{equation}
The equation vanishes provided $Z = \xi$ and hence this contact CR-submanifold reduces to a cosymplectic manifold.

Acknowledgement. The first author has been sponsored by UGC-BSR fellowship, India. The authors are thankful to referee for valuable suggestions.

References

1 Department of Mathematics, Jadavpur University, Kolkata, India.
E-mail address: barnali.laha87@gmail.com

2 Department of Mathematics, Jadavpur University, Kolkata, India.
E-mail address: badan06@yahoo.co.in

3 Department of Mathematics, Jadavpur University, Kolkata, India.
E-mail address: bhattachar1968@yahoo.co.in