UNDER TOTALLY GEODETIC VARIETY OF $Geod\mathbb{C}P^n$

ABDELHAKIM CHILLALI*

Abstract. $\mathbb{C}P^n$ is a variety whose all geodesics are closed and periodic of the same period π. We can apply all studies made by M. SARIH in his thesis, see ([1]), in particular $\text{dim}(\text{Geod}\mathbb{C}P^n) = 4n - 2$. In this paper we will find some results concerning the open problem in [1], page 56.

1. Introduction

S^{2n+1} is provided with the canonical riemannian structure induced by the scalar product of \mathbb{R}^{2n+2}. S^1 is the Lie group; it is the unit circle of \mathbb{R}^2.

$u : S^1 \times S^{2n+1} \rightarrow S^{2n+1}$ an action of S^1 on S^{2n+1}:

- u is differentiable
- $\forall z \in S^1, \ u_z : x \mapsto u(z, x)$ is a diffeomorphism of S^{2n+1}
- $z \mapsto u_z$ is a homomorphism of S^1 on $\text{Diff}(S^{2n+1})$.

The action u is free if: $\forall z \in S^1, \ u_z$ is without fixed point.

We define the relation: $x \sim y \Leftrightarrow \exists z \in S^1/ y = u(z, x)$; \sim is an equivalence relation and S^{2n+1}/S^1 is the quotient set of S^{2n+1} by \sim.

If u is free then: [2, 3]

- S^{2n+1}/S^1 is a C^∞-variety
- $S^1 \hookrightarrow S^{2n+1} \rightarrow S^{2n+1}/S^1$ is a principal bundle of fiber of type S^1

Theorem 1.1. If S^1 Operate isometrically and freely on (S^{2n+1}, can), the quotient riemannized by submersion is isometric to $(\mathbb{C}P^n, \text{can})$.

For the proof of this theorem, see [1], page 5.

2. Under Variety of $\mathbb{C}P^n$

Under the conditions of the theorem 1.1, we have (S^{2n+1}, can) is isomorphic to $(\mathbb{C}P^n, \text{can})$. The geodesics of $(\mathbb{C}P^n, \text{can})$ are simply closed and of the same length π.

Definition 2.1. Let M and N be two connected Riemannian manifolds. An application $f : M \rightarrow N$ of class C^∞, is said to be totally geodesic, if for any geodesic γ of M, $f \circ \gamma$ is a geodesic of N.

Date: Received: Dec 2, 2018

*Corresponding author.

2010 Mathematics Subject Classification. 53C40, 53C55.

Key words and phrases. Totally geodetic, Variety, Geodesics.
Proposition 2.2. The injection $i : S^p \rightarrow S^q$ is totally geodesic.

Proof. Let γ be a geodesic of S^p, γ is a big circle, so $i(\gamma)$ is a big circle of S^q.

Proposition 2.3. The injection $j : \mathbb{C}P^m \rightarrow \mathbb{C}P^n$ is totally geodesic.

Proof. We have (S^{2n+1}, can) is isomorphic to $(\mathbb{C}P^n, can)$ and (S^{2m+1}, can) is isomorphic to $(\mathbb{C}P^m, can)$. The injection $i : S^{2m+1} \rightarrow S^{2n+1}$ is totally geodesic, hence the result.

Definition 2.4. We call C_l-manifold, a manifold M such that there exists a metric g on M satisfying all geodesics of M are periodical and of same period l.

Let (M, g) be a C_l-manifold, $\zeta : \mathbb{R} \times UM \rightarrow UM (t, v) \mapsto \zeta^t(v)$ is the geodesic flow.

Proposition 2.5. $S^1 \hookrightarrow UM \rightarrow GeodM$ is a principal bundle of fiber of type S^1, and $\dim(\text{Geod}M) = 2n - 2$.

Remark 2.6. $\mathbb{C}P^m$ is a $C\pi$-manifold and $\dim(\text{Geod}\mathbb{C}P^m) = 4n - 2$.

If M is a Riemannian manifold having closed geodesics of the same length l and N is a totally geodesic sub manifold whose all geodesics are also closed and of the same length l, then $\text{Geod}N$ is plunged into $\text{Geod}M$, as a submanifold totally geodesic.

Corollary 2.7. $\text{Geod}\mathbb{K}P^m$ is plunged as a totally geodesic submanifold into $\text{Geod}\mathbb{C}P^n$, with $m \leq n$ and $\mathbb{K} = \mathbb{R}$ or \mathbb{C}.

3. SOME RESULTS CONCERNING THE OPEN PROBLEM

Open problem:
Is there any geodesic subvariety of $\text{Geod}\mathbb{C}P^n$ other than $\text{Geod}\mathbb{C}P^m$, with $m \leq n$ and $\mathbb{K} = \mathbb{R}$ or \mathbb{C}?

As an important class of homogeneous spaces, the Grassmann manifolds $G_{\mathbb{C}}(2, n-1)$, have been extensively studied by group-theoretic methods. In this section, we show how their differential geometry. The geodesic in $G_{\mathbb{C}}(2, n-1)$, can be characterized by proprieties of their images in the Euclidean space. We have:

$$\text{Geod}S^2 \rightarrow_{f} \text{Geod}\mathbb{C}P^n \rightarrow_{\pi} G_{\mathbb{C}}(2, n-1)$$

is a bundle of fiber of type S^2. The following two lemmas are results of a more general theorem see [4] page 38.

Lemma 3.1. Let f be a continuous application of M in $\text{Geod}\mathbb{C}P^n$, it exists:

- A locally trivial bundle of the type fiber S^1; $E \rightarrow_{r} M$
- A continuous application F of E in $U\mathbb{C}P^n$ verifying:

$\begin{array}{c}
E \xrightarrow{F} U\mathbb{C}P^n \\
\downarrow{r} \quad \downarrow{p} \\
M \xrightarrow{f} \text{Geod}\mathbb{C}P^n
\end{array}$

Lemma 3.2. Let h be a continuous application of N in $G_{\mathbb{C}}(2, n-1)$, it exists:
• A locally trivial fiber of the type fiber $S^2; M \to_p N$
• A continuous application H of M in GeodCP^n verifying:

$$
\begin{array}{ccc}
M & \xrightarrow{H} & \text{GeodCP}^n \\
p & \downarrow & \downarrow \pi \\
N & \xrightarrow{h} & G_C(2, n-1)
\end{array}
$$

(3.2)

Remark 3.3.
• If M is a part of GeodCP^n, and f is the canonical injection of M into GeodCP^n, then E is a part of $U\text{CP}^n$.
• If N is a part of $G_C(2, n-1)$, and h is the canonical injection of N into $G_C(2, n-1)$, then M is a part of GeodCP^n.

Lemma 3.4. If f is an injective application, totally geodesic of M in GeodCP^n, then F transforms a horizontal geodesic into a horizontal geodesic.

Proof. f transforms a geodesic into a geodesic. Let γ be a horizontal geodesic of E, such that $\gamma(0) = x$ and $\gamma'(0) = u \in \text{Hor}(x)$, then $f \circ r \circ \gamma$ is a horizontal geodesic of GeodCP^n of initial condition $f(x)$ and $(f \circ r \circ \gamma)'(0) \in \text{Hor}(f(x))$. So, $p \circ F \circ \gamma(t) = p(F(\gamma(t)))$, consequently $F \circ \gamma$ is a horizontal geodesic. □

Lemma 3.5. If h is an injective application, totally geodesic of N in $G_C(2, n-1)$, then H is a p-injective application, totally geodesic of M in GeodCP^n.

Proof. We have $h \circ p = \pi \circ H$. Let $x, y \in M$, then $H(x) = H(y) \implies h \circ p(x) = h \circ p(y) \implies p(x) = p(y)$, so H is an p-injective application. Let γ be a geodesic of M, $\forall \epsilon > 0$, $\gamma(\cdot - \epsilon, \epsilon]$ is a sub manifold of M, so $H(\gamma(\cdot - \epsilon, \epsilon])$ is a sub manifold of GeodCP^n. We have: $\pi(H(\gamma(\cdot - \epsilon, \epsilon])) = h(p(\gamma(\cdot - \epsilon, \epsilon)))$, i.e., $\forall \epsilon > 0$, $H(\gamma(\cdot - \epsilon, \epsilon])$ is a sub manifold of GeodCP^n, thereby H is totally geodesic. □

Lemma 3.6. Let M is a totally geodesic sub manifold of N. If N is a totally geodesic sub manifold of P, then M is a totally geodesic sub manifold of P.

Proof. We have:

$$
\begin{array}{ccc}
M & \xrightarrow{i} & N \\
& & \xrightarrow{j} P
\end{array}
$$

(3.3)

$j \circ i$ is an injective application which turns a geodesic of M into a geodesic of P. □

Lemma 3.7. M is generated by a totally geodesic sub manifold of CP^n if and only if E is a unit bundle.

Proof. \iff If $E = U\text{CP}^k$, then the following two fibrations:

$$
\begin{array}{ccc}
U\text{CP}^k & \xrightarrow{F} & U\text{CP}^n \\
r & \downarrow & \downarrow p \\
M & \xrightarrow{f} & \text{GeodCP}^n
\end{array}
$$

(3.4)
so, \(M \) is generated by a totally geodesic sub manifold of \(\mathbb{C}P^n \).

\(\implies \) If \(M \) is generated by a totally geodesic sub manifold of \(\mathbb{C}P^n \), then there exists \(k \) such that, \(E = U\mathbb{C}P^k \).

\(\square \)

Lemma 3.8. \(M \) is generated by a totally geodesic sub manifold of \(\mathbb{C}P^n \) if and only if \(N \) is a Grassmann manifolds.

Proof. \(\iff \) If \(N = G_C(2, m - 1) \), then the following two fibrations:

\[
\begin{align*}
G_C \mathbb{C}P^m & \xrightarrow{H} G_C \mathbb{C}P^n \\
G_C(2, m - 1) & \xrightarrow{h} G_C(2, n - 1)
\end{align*}
\]

so, \(M \) is generated by a totally geodesic sub manifold of \(\mathbb{C}P^n \).

\(\implies \) If \(M \) is generated by a totally geodesic sub manifold of \(\mathbb{C}P^n \), then there exists \(m \) such that, \(N = G_C(2, m - 1) \).

\(\square \)

References

Sidi Mohamed ben Abdullah University, FP, LSI, Taza, Morocco

E-mail address: abdelhakim.chillali@usmba.ac.ma