ON α-SEMIDERIVATIONS AND COMMUTATIVITY OF PRIME RINGS

KYUNG HO KIM

ABSTRACT. In this paper, we introduce the notion of an α-semiderivation on prime rings, and we try to extend some results for derivations of rings or near-rings to a more general case for α-semiderivations of prime rings.

1. Introduction and Preliminaries

Over the last few decades, several authors have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R. The first result in this direction is due to E. C. Posner [9] who proved that if a ring R admits a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R is commutative. This result was subsequently, refined and extended by a number of authors. In [6], Bresar and Vukman showed that a prime ring must be commutative if it admits a nonzero left derivation. Recently, many authors have obtained commutativity theorems for prime and semiprime rings admitting derivation, generalized derivation. Furthermore, Bresar and Vukman [5] studied the notions of a $*$-derivation and a Jordan $*$-derivation of R. In this paper, we introduce the notion of an α-semiderivation on prime rings, and we try to extend some results for derivations of rings or near-rings to a more general case for α-semiderivations of prime rings.

Let R is a ring. Then R is prime if $aRb = \{0\}$ implies $a = 0$ or $b = 0$. An additive mapping $d : R \to R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$. Also, we make use of the following two basic identities without any specific mention:

\[
x \circ (yz) = (x \circ y)z - y[x, z] = y(x \circ z) + [x, y]z
\]
\[
(xy) \circ z = x(y \circ z) - [x, z]y = (x \circ z)y + x[y, z]
\]
\[
[x, y, z] = x[y, z] + [x, z]y \text{ and } [x, y]z = y[x, z] + [x, y]z
\]
for all $x, y, z \in R$.

Definition 1.1. Let R be a prime ring and α be an automorphism on R. An additive mapping $d : R \to R$ is called a α-semiderivation associated with an epimorphism $g : R \to R$ if
(i) \(d(xy) = d(x)g(y) + \alpha(x)d(y) = d(x)\alpha(y) + g(x)d(y), \)
(ii) \(d(g(x)) = g(d(x)), \) for all \(x, y \in R.\)

Definition 1.2. Let \(R \) be a prime ring and \(\alpha \) be an automorphism on \(R. \) An additive mapping \(d : R \rightarrow R \) is called a reverse \(\alpha \)-semiderivation associated with an epimorphism \(g : R \rightarrow R \) if

(i) \(d(xy) = d(y)g(x) + \alpha(y)d(x) = d(y)\alpha(x) + g(y)d(x), \)
(ii) \(d(g(x)) = g(d(x)), \) for all \(x, y \in R.\)

2. \(\alpha \)-Semiderivations and Commutativity of Prime Rings

Lemma 2.1. Let \(R \) be a prime ring and let \(d \) be a nonzero \(\alpha \)-semiderivation associated with \(g \) and \(a \in R. \) If \(ad(R) = 0, \) then \(a = 0. \)

Proof. By hypothesis, we have

\[
\text{ad}(xy) = 0, \forall x, y \in R, \tag{2.1}
\]

which implies that \(\text{ad}(x)g(y) + a\alpha(x)d(y)) = 0 \) for all \(x, y \in R. \) By the hypothesis, we have \(a\alpha(x)d(y) = 0 \) for all \(x, y \in R. \) Replacing \(x \) by \(\alpha^{-1}(x) \) in this relation, we get \(axd(y) = 0 \) for all \(x, y \in R, \) which implies that \(aRd(y) = 0 \) for all \(y \in R. \) Since \(R \) is prime and \(d \neq 0, \) we have \(a = 0. \)

Theorem 2.2. Let \(R \) be a prime ring and \(g \) be an epimorphism on \(R. \) If \(R \) admits an \(\alpha \)-semiderivation \(d \) associated with \(g \) such that \(d([x, y]) = 0 \) for all \(x, y \in R, \) then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have

\[
d([x, y]) = 0, \forall x, y \in R. \tag{2.2}
\]

Replacing \(y \) by \(yx \) in (2), we have

\[
d([x, yx]) = d([x, y]x) = d([x, y])g(x) + \alpha([x, y])d(x) = 0
\]

for all \(x, y \in R. \) By the hypothesis, we get

\[
\alpha([x, y])d(x) = 0, \forall x, y \in R. \tag{2.3}
\]

Taking \(\alpha^{-1}([x, y]) \) instead of \([x, y]\) in this relation, we have \([x, y]d(x) = 0\) for all \(x, y \in R. \) Taking \(zy \) instead of \(y \) with \(z \in R \) in this relation, we obtain \([x, z]yd(x) = 0\) for all \(x, y, z \in R. \) This implies that \([x, z]Rd(x) = \{0\}\) for all \(x, z \in R. \) Since \(R \) is prime, we have \([x, z] = 0 \) or \(d(x) = 0 \) for all \(x, z \in R. \) Let \(K = \{x \in R|d(x) = 0\} \) and \(L = \{x \in R|[x, z] = 0, \forall z \in R\}. \) Then \(K \) and \(L \) are both additive subgroups and \(K \cup L = R, \) but \((R, +)\) is not union of two its proper subgroups, which implies that either \(K = R \) or \(L = R. \) In the former case, we have \(d(x) = 0 \) for all \(x \in R, \) that is, \(d = 0. \) If \(L = R, \) then we get \([x, z] = 0 \) for all \(x, y \in R, \) which implies that \(R \) is commutative.

Theorem 2.3. Let \(R \) be a prime ring and \(g \) be an epimorphism on \(R. \) If \(R \) admits an \(\alpha \)-semiderivation \(d \) associated with \(g \) such that \(d(x \circ y) = 0 \) for all \(x, y \in R, \) then \(d = 0 \) or \(R \) is commutative.
Proof. By hypothesis, we have
\[d(x \circ y) = 0, \forall x, y \in R. \quad (2.4) \]
Replacing \(y \) by \(yx \) in (4), we have \(d(x \circ yx) = d((x \circ y)x) = d(x \circ y)g(x) + \alpha(x \circ y)d(x) = 0 \) for all \(x, y \in R \). By the hypothesis, we get
\[\alpha(x \circ y)d(x) = 0, \forall x, y \in R. \quad (2.5) \]
Taking \(\alpha^{-1}(x \circ y) \) instead of \(x \circ y \) in the last relation, we have \((x \circ y)d(x) = 0 \) for all \(x, y \in R \). Taking \(yx \) instead of \(y \) in this relation, we obtain \((x \circ y)xzd(x) = 0 \) for all \(x, y \in R \). This implies that \((x \circ y)Rd(x) = \{0\} \) for all \(x, y \in R \). Since \(R \) is prime, we have \(x \circ y = 0 \) or \(d(x) = 0 \) for all \(x, y \in R \). Let \(K = \{x \in R | d(x) = 0\} \) and \(L = \{x \in R | x \circ y = 0, \forall y \in R\} \). Then \(K \) and \(L \) are both additive subgroups and \(K \cup L = R \), but \((R, +) \) is not union of two its proper subgroups, which implies that either \(K = R \) or \(L = R \). In the former case, we have \(d(x) = 0 \) for all \(x \in R \), that is, \(d = 0 \). If \(L = R \), then we get \(x \circ y = 0 \) for all \(x, y \in R \), which implies that \(xz = xy \) for all \(x, y \in R \). Again, replacing \(x \) by \(xz \) in the last relation, we have \(xzy = yxz = yxz \), that is, \(x[z, y] = 0 \) for all \(x, y, z \in R \). This implies that \(R[z, y] = \{0\} \) for all \(x, z \in R \). Hence \(tR[z, y] = \{0\} \) for all \(t \neq y, z \in R \). Since \(R \) is prime, we have \([z, y] = 0 \) for all \(y, z \in R \), which implies that \(R \) is commutative.

Theorem 2.4. Let \(R \) be a prime ring and \(g \) be an epimorphism on \(R \). If \(R \) admits an \(\alpha \)-semiderivation \(d \) associated with \(g \) such that \([d(x), y] = 0 \) for all \(x, y \in R \), then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have
\[[d(x), y] = 0, \forall x, y \in R. \quad (2.6) \]
Replacing \(x \) by \(xz \) in (6) and using (6), we have
\[
0 = [d(xz), y] = [d(x)g(z) + \alpha(x)d(z), y]
= [d(x)g(z), y] + [\alpha(x)d(z), y]
= d(x)[g(z), y] + [d(x), y]g(z) + [\alpha(x)[d(z), y] + [\alpha(x), y]d(z)
= d(x)[g(z), y] + [\alpha(x), y]d(z)
\]
for all \(x, y, z \in R \). Taking \(\alpha(z) \) instead of \(y \) in (7), we have \([\alpha(x), g(z)]d(z) = 0 \) for all \(x, z \in R \). Substituting \(\alpha^{-1}(x) \) for \(x \) in this relation, we get \(d(x)[x, g(z)] = 0 \) for all \(x, z \in R \). Again, replacing \(x \) by \(yx \) in the last relation, we obtain \(d(x)y[x, g(z)] = 0 \) for all \(x, y, z \in R \). Hence \(d(x)R[x, g(z)] = 0 \) for all \(x, y, z \in R \). Since \(R \) is prime, we have \(d(x) = 0 \) or \([x, g(z)] = 0 \) for all \(x, y \in R \). Let \(K = \{x \in R | d(x) = 0\} \) and \(L = \{x \in R | [x, g(z)] = 0, \forall y \in R\} \). Then \(K \) and \(L \) are both additive subgroups and \(K \cup L = R \), but \((R, +)\) is not union of two its proper subgroups, which implies that either \(K = R \) or \(L = R \). In the former case, we have \(d(x) = 0 \) for all \(x \in R \), that is, \(d = 0 \). If \(L = R \), then we get \([y, g(x)] = 0 \) for all \(x, y \in R \). Since \(g \) is onto, we have \([y, x] = 0 \) for all \(x, y \in R \), which implies that \(R \) is commutative.

\[\square \]
Theorem 2.5. Let \(R \) be a prime ring and \(g \) be an epimorphism on \(R \). If \(R \) admits an \(\alpha \)-semiderivation \(d \) associated with \(g \) such that \(d(x) \circ y = 0 \) for all \(x, y \in R \), then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have
\[
d(x) \circ y = 0, \ \forall \ x, y \in R. \tag{2.8}
\]
Replacing \(x \) by \(xz \) in (8) and using (8), we have
\[
0 = d(xz) \circ y = d(x)g(z) \circ y + \alpha(x)d(z) \circ y
= (d(x) \circ y)g(z) + d(x)[g(z), y] + \alpha(x)(d(z) \circ y) - [\alpha(x), y]d(z)
= d(x)[g(z), y] - [\alpha(x), y]d(z) \tag{2.9}
\]
for all \(x, y, z \in R \). Taking \(g(z) \) instead of \(y \) in (9), we have \([\alpha(x), g(z)]d(z) = 0\) for all \(x, z \in R \). Substituting \(\alpha^{-1}(x) \) for \(x \) in this relation, we get \([x, g(z)]d(z) = 0\) for all \(x, z \in R \). Again, replacing \(x \) by \(yx \) in the last relation, we obtain \([y, g(z)]x d(z) = 0\) for all \(x, y, z \in R \). Hence \([y, g(z)]x d(z) = 0\) for all \(x, y \in R \).

Since \(R \) is prime, we have \(d(z) = 0 \) or \([y, g(z)] = 0\) for all \(y, z \in R \). Let \(K = \{z \in R | d(z) = 0\} \) and \(L = \{y \in R | [y, g(z)] = 0, \forall z \in R\} \). Then \(K \) and \(L \) are both additive subgroups and \(K \cup L = R \), but \((R, +)\) is not union of two its proper subgroups, which implies that either \(K = R \) or \(L = R \). In the former case, we have \(d(z) = 0 \) for all \(z \in R \), that is, \(d = 0 \). If \(L = R \), then we get \([y, g(z)] = 0\) for all \(x, y \in R \). Since \(g \) is onto, we have \([y, z] = 0\) for all \(y, z \in R \), which implies that \(R \) is commutative.

\(\square \)

Theorem 2.6. Let \(R \) be a prime ring and let \(g \) be an epimorphism on \(R \). If \(d \) is an \(\alpha \)-semiderivation associated with \(g \) such that \(d(xy) = d(x)d(y) \) for all \(x, y \in R \), then \(d = 0 \).

Proof. For any \(x, y \in R \), we have
\[
d(xy) = d(x)g(y) + \alpha(x)d(y) = d(x)d(y), \ \forall \ x, y \in R. \tag{2.10}
\]
Replacing \(x \) by \(xw \) in (10), we obtain \(d(xw)g(y) + \alpha(xw)d(y) = d(xw)d(y) \) for all \(x, y, w \in R \). Hence \(d(x)d(w)g(y) + \alpha(w)\alpha(x)d(y) = d(x)d(w)d(y) = d(x)d(xy) \) for all \(x, y, w \in R \), and hence \(d(x)d(w)g(y) + \alpha(x)\alpha(w)d(y) = d(x)d(w)g(y) + d(x)\alpha(w)d(y) \) for all \(x, y, w \in R \). This implies that \((\alpha(x) - d(x))\alpha(w)d(y) = 0\) for all \(x, y, w \in R \). Substituting \(\alpha^{-1}(w) \) for \(w \) in the last relation, we have \((\alpha(x) - d(x))Rd(y) = 0\) for all \(x, y \in R \). Since \(R \) is prime, we have \(d(x) = \alpha(x) \) or \(d(y) = 0\) for all \(x, y \in R \). Let us assume that \(d(x) = \alpha(x) \) for all \(x \in R \). Substituting \(xy \) for \(x \) in the last relation, we have \(d(x)g(y) + \alpha(x)d(y) = \alpha(x)\alpha(y) = \alpha(x)d(y) \) for all \(x, y \in R \), that is, \(d(x)g(y) = 0 \) for all \(x, y \in R \). Since \(g \) is onto, we have \(d(x)y = 0 \), which implies that \(d(x)R = \{0\} \) for all \(x \in R \). Thus we obtain \(d(x) = 0 \) for all \(x \in R \) in any case.

\(\square \)

Theorem 2.7. Let \(R \) be a prime ring and let \(g \) be an epimorphism on \(R \). If \(d \) is an \(\alpha \)-semiderivation associated with \(g \) such that \(d(xy) = d(y)d(x) \) for all \(x, y \in R \) and \(\alpha(y) \neq d(y) \) for all \(y \in R \), then \(d = 0 \).
Proof. For any \(x, y \in R \), we have
\[
d(xy) = d(x)g(y) + \alpha(x)d(y) = d(y)d(x), \quad \forall \ x, y \in R.
\]
Replacing \(x \) by \(xy \) in (11), we obtain \(d(xy)g(y) + \alpha(xy)d(y) = d(y)d(xy) \) for all \(x, y \in R \). Hence we have
\[
d(y)d(x)g(y) + \alpha(y)\alpha(x)d(y) = d(y)d(x)g(y) + d(y)\alpha(x)d(y)
\]
for all \(x, y \in R \), and hence \((\alpha(y) - d(y))\alpha(x)d(y) = 0\) for all \(x, y \in R \). Substituting \(\alpha^{-1}(x) \) for \(x \) in the last relation, we get \((\alpha(y) - d(y))xd(y) = 0\) for all \(x, y \in R \). This implies that \((\alpha(y) - d(y))Rd(y) = 0\) for all \(y \in R \). Since \(R \) is prime, we have \(\alpha(y) - d(y) = 0 \) or \(d(y) = 0 \) for all \(y \in R \). But \(\alpha(y) \neq d(y) \) for all \(y \in R \), and so \(d(y) = 0 \) for all \(y \in R \).

\[\square\]

Theorem 2.8. Let \(R \) be a prime ring and let \(g \) be an epimorphism on \(R \). If \(d \) is an \(\alpha \)-semiderivation associated with \(g \) such that \(\alpha(xy) = \alpha(y)\alpha(x) \) for all \(x, y \in R \), then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have
\[
d(xy) = d(x)g(y) + \alpha(x)d(y), \quad \forall \ x, y \in R.
\]
Replacing \(y \) by \(yz \) in (12), we have
\[
d(x(yz)) = d(x)g(yz) + \alpha(x)d(yz)
= d(x)g(y)g(z) + \alpha(x)d(y)g(z) + \alpha(x)\alpha(y)d(z)
\]
for all \(x, y, z \in R \). On the other hand, we get
\[
d(xyz) = d((xy)z)
= d(xy)g(z) + \alpha(xy)d(z)
= d(x)g(y)g(z) + \alpha(x)d(y)g(z) + \alpha(y)\alpha(x)d(z)
\]
for all \(x, y, z \in R \). Comparing (13) and (14), we have \(d(x)[\alpha(y), \alpha(z)] = 0 \) for all \(x, y, z \in R \). Substituting \(\alpha^{-1}(y) \) for \(y \) and \(\alpha^{-1}(z) \) for \(z \) in the last relation. Since \(g \) is onto, we have \(d(x)[y, z] = 0 \) for all \(x, y, z \in R \). Replacing \(z \) by \(zr \), in this relation, we obtain
\[
d(x)[y, z] = 0, \quad \forall \ r, x, z \in R.
\]
This implies \(d(x)R[y, r] \) for all \(r, x, y \in R \). Since \(R \) is prime, we have \(d(x) = 0 \) or \([y, z] = 0 \) for all \(x, y, z \in R \). Let \(K = \{ x \in R | d(x) = 0 \} \) and \(L = \{ z \in R | [y, z] = 0, \forall y \in R \} \). Then \(K \) and \(L \) are both additive subgroups and \(K \cup L = R \), but \((R, +)\) is not union of two its proper subgroups, which implies that either \(K = R \) or \(L = R \). In the former case, we have \(d = 0 \). If \(L = R \), then \([g(y), z] = 0 \) for all \(y, z \in R \). Since \(g \) is onto, we obtain \([y, z] = 0 \), which implies that \(R \) is commutative.

\[\square\]

Theorem 2.9. Let \(R \) be a prime ring and let \(g \) be an epimorphism on \(R \). If \(d \) is a reverse \(\alpha \)-semiderivation associated with \(g \) such that \(g(xy) = g(y)g(x) \) for all \(x, y \in R \), then \([d(x), z] = 0 \) for all \(x, z \in R \) or \(d = 0 \).
Proof. By hypothesis, we have

\[d(xy) = d(y)g(x) + \alpha(y)d(x), \forall \, x, y \in R. \]

(2.16)

Replacing \(x \) by \(xz \) in (16), we have

\[
d(xzy) = d(y)g(xz) + \alpha(y)d(xz)
= d(y)g(z)g(x) + \alpha(y)d(z)g(x) + \alpha(y)\alpha(z)d(x)
\]

(2.17)

for all \(x, y, z \in R \). On the other hand,

\[
d(xzy) = d(x(zy)) = d(zy)g(x) + \alpha(zy)d(x)
= d(y)g(z)g(x) + \alpha(y)d(z)g(x) + \alpha(z)\alpha(y)d(x)
\]

(2.18)

Comparing (17) with (18), we get \([\alpha(z), \alpha(y)]d(x)\) for all \(x, y, z \in R \). Again, replacing \(y \) by \(\alpha^{-1}(y) \) and \(z \) by \(\alpha^{-1}(z) \) in this relation, we have \([z, y]d(x) = 0\) for all \(x, y, z \in R \). Taking \(d(x)z \) instead of \(z \) in this relation, we have

\[
0 = [d(x)z, z]d(x)
= d(x)[z, z]d(x) + [d(x), z]zd(x)
= [d(x), z]zd(x)
\]

(2.19)

This implies that \([d(x), z]Rd(x) = \{0\}\) for all \(x, z \in R \). Since \(R \) is prime, we get either \([d(x), z] = 0\) or \(d(x) = 0\) for all \(x, z \in R \).

\[\Box\]

Theorem 2.10. Let \(R \) be a prime ring and let \(g \) be an epimorphism on \(R \). If \(d \) is an \(\alpha \)-semiderivation associated with \(g \) such that \(d(x) \circ \alpha(y) = 0 \) for all \(x, y \in R \), then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have

\[
d(x) \circ \alpha(y) = 0, \forall \, x, y \in R.
\]

(2.20)

Replacing \(x \) by \(yx \) in (20), we have

\[
0 = d(yx) \circ \alpha(y)
= (d(y)g(x) + \alpha(y)d(x)) \circ \alpha(y)
= d(y)g(x) \circ \alpha(y) + \alpha(y)d(x) \circ \alpha(y)
= (d(y) \circ \alpha(y))g(x) + d(y)[g(x), \alpha(y)] + \alpha(y)(d(x) \circ \alpha(y)) - [\alpha(y), \alpha(y)]d(x)
= d(y)[g(x), \alpha(y)]
\]

(2.21)

for every \(x, y \in R \). Since \(g \) is onto, we get \(d(y)[x, \alpha(y)] = 0 \) for all \(x, y \in R \). Taking \(xz \) instead of \(x \) in this relation, we obtain \(d(y)x[z, \alpha(y)] = 0 \) for all \(x, y, z \in R \).

This implies that \(d(y)R[z, \alpha(y)] = \{0\} \) for all \(y, z \in R \). Since \(R \) is prime, we have \(d(y) = 0 \) or \([z, \alpha(y)] = 0\) for all \(y, z \in R \). Let \(K = \{y \in R | d(y) = 0\} \) and \(L = \{y \in R | [z, \alpha(y)] = 0, \forall z \in R\} \). Then \(K \) and \(L \) are both additive subgroups and \(K \cup L = R \), but \((R, +) \) is not union of two its proper subgroups, which implies that either \(K = R \) or \(L = R \). In the former case, we have \(d = 0 \). If \(L = R \), then \([z, \alpha(y)] = 0 \) for all \(y, z \in R \). Again, replacing \(y \) by \(\alpha^{-1}(y) \) in the last relation, we get \([z, y] = 0\) for all \(y, z \in R \), which implies that \(R \) is commutative.

\[\Box\]
Theorem 2.11. Let R be a prime ring and let g be an epimorphism on R. If d is an α-semiderivation associated with g such that $[d(x), \alpha(y)] = 0$ for all $x, y \in R$, then $d = 0$ or R is commutative.

Proof. By hypothesis, we have

$$[d(x), \alpha(y)] = 0, \forall x, y \in R. \quad (2.22)$$

Replacing x by yx in (22), we have

$$0 = [d(yx), \alpha(y)] = [d(y)g(x) + \alpha(y)d(x), \alpha(y)] = [d(y)g(x), \alpha(y)] + [\alpha(y)d(x), \alpha(y)] = d(y)[g(x), \alpha(y)] + [d(y), \alpha(y)]g(x) + \alpha(y)[d(x), \alpha(y)] + [\alpha(y), \alpha(y)]d(x) = d(y)[g(x), \alpha(y)] \quad (2.23)$$

for every $x, y \in R$. Since g is onto, we get $d(y)[x, \alpha(y)] = 0$ for all $x, y \in R$. Taking xz instead of x in this relation, we obtain $d(y)[x, \alpha(y)] = 0$ for all $x, y, z \in R$. This implies that $d(y)R[z, \alpha(y)] = \{0\}$ for all $y, z \in R$. Since R is prime, we have $d(y) = 0$ or $\alpha(y) = 0$ for all $y, z \in R$. Let $K = \{y \in R | d(y) = 0\}$ and $L = \{y \in R | [z, \alpha(y)] = 0, \forall z \in R\}$. Then K and L are both additive subgroups and $K \cup L = R$, but $(R, +)$ is not union of two its proper subgroups, which implies that either $K = R$ or $L = R$. In the former case, we have $d = 0$. If $L = R$, then $[z, \alpha(y)] = 0$ for all $y, z \in R$. Again, replacing y by $\alpha^{-1}(y)$ in the last relation, we get $[z, y] = 0$ for all $y, z \in R$, which implies that R is commutative.

\[\square\]

Theorem 2.12. Let R be a prime ring and let g be an epimorphism on R. If d is an α-semiderivation associated with g such that $d(x)d(y) = 0$ for all $x, y \in R$, then $d = 0$.

Proof. By hypothesis, we have

$$d(x)d(y) = 0, \forall x, y \in R. \quad (2.24)$$

Replacing y by yz in (24), we have $d(x)d(yz) = d(x)(d(y)g(z) + \alpha(y)d(z)) = 0$ for all $x, y, z \in R$. Hence $d(x)\alpha(y)d(z) = 0$ for all $x, y, z \in R$. Taking $\alpha^{-1}(y)$ instead of y in the last relation, we get $d(x)yd(z) = 0$ for all $x, y, z \in R$, which implies that $d(x)Rd(z) = \{0\}$ for all $x, z \in R$. Since R is prime, we have $d(x) = 0$ or $d(z) = 0$ for all $x, z \in R$. That is, $d = 0$.

\[\square\]

Theorem 2.13. Let R be a prime ring and let g be an epimorphism on R. If d is an α-semiderivation associated with g such that $[d(x), g(y)] = 0$ for all $x, y \in R$, then $d = 0$ or R is commutative.

Proof. By hypothesis, we have

$$[d(x), g(y)] = 0, \forall x, y \in R. \quad (2.25)$$
Replacing x by xz in (25), we have

$$0 = [d(xz), g(y)]$$
$$= [d(x)g(y) + \alpha(x)d(y), g(y)]$$
$$= [d(x)g(y), g(y)] + [\alpha(x)d(y), g(y)]$$
$$= d(x)[g(y), g(y)] + [d(x), g(y)]g(y) + \alpha(x)[d(y), g(y)] + [\alpha(x), g(y)]d(y)$$
$$= [\alpha(x), g(y)]d(y)$$ (2.26)

for all $x, y \in R$. Also, replacing x by $\alpha^{-1}(x)$ in the last relation, we have $[x, g(y)]d(y) = 0$ for all $x, y \in R$. Taking zx instead of x in this relation, we have $[z, g(y)]xd(y) = 0$ for all $x, y, z \in R$. This implies that $[z, g(y)]Rd(y) = \{0\}$ for all $y, z \in R$. Since R is prime, we get $d(y) = 0$ or $[z, g(y)] = 0$ for all $y, x \in R$. Let $K = \{y \in R | d(y) = 0\}$ and $L = \{y \in R | [z, g(y)] = 0, \forall z \in R\}$. Then K and L are both additive subgroups and $K \cup L = R$, but $(R, +)$ is not union of two its proper subgroups, which implies that either $K = R$ or $L = R$. In the former case, we have $d = 0$. If $L = R$, then $[z, g(y)] = 0$ for all $y, z \in R$. Since g is onto, we get $[z, y] = 0$ for all $y, z \in R$, which implies that R is commutative.

\[\Box\]

Theorem 2.14. Let R be a prime ring and let g be an epimorphism on R. If d is an α-semiderivation associated with g such that $d(x) \circ g(y) = 0$ for all $x, y \in R$, then $d = 0$ or R is commutative.

Proof. By hypothesis, we have

$$d(x) \circ g(y) = 0, \forall x, y \in R.$$ (2.27)

Replacing x by xz in (27), we have

$$0 = d(xz) \circ g(y)$$
$$= (d(x)g(y) + \alpha(x)d(y)) \circ g(y)$$
$$= d(x)g(y) \circ g(y) + \alpha(x)d(y) \circ g(y)$$
$$= (d(x) \circ g(y))g(y) + d(x)[g(y), g(y)] + \alpha(x)(d(y) \circ g(y)) - [\alpha(x), g(y)]d(y)$$
$$= [\alpha(x), g(y)]d(y)$$ (2.28)

for all $x, y \in R$. Also, replacing x by $\alpha^{-1}(x)$ in the last relation, we have $[x, g(y)]d(y) = 0$ for all $x, y \in R$. Taking zx instead of x in this relation, we have $[z, g(y)]xd(y) = 0$ for all $x, y, z \in R$. This implies that $[z, g(y)]Rd(y) = \{0\}$ for all $y, z \in R$. Since R is prime, we get $d(y) = 0$ or $[z, g(y)] = 0$ for all $y, x \in R$. Let $K = \{y \in R | d(y) = 0\}$ and $L = \{y \in R | [z, g(y)] = 0, \forall z \in R\}$. Then K and L are both additive subgroups and $K \cup L = R$, but $(R, +)$ is not union of two its proper subgroups, which implies that either $K = R$ or $L = R$. In the former case, we have $d = 0$. If $L = R$, then $[z, g(y)] = 0$ for all $y, z \in R$. Since g is onto, we get $[z, y] = 0$ for all $y, z \in R$, which implies that R is commutative.

\[\Box\]
References

1 Department of Mathematics, Korea National University of Transportation, Chungju, 27469, Korea.

Email address: ghkim@ut.ac.kr