INVARIANT DIFFERENTIAL OPERATORS AND THE GENERALIZED SYMMETRIC GROUP

IBRAHIM NONKANÉ1,∗ AND LATÉVI M. LAWSON2

ABSTRACT. In this paper, we study the decomposition of the direct image of \(\pi_+(O_X)\), the polynomial ring \(O_X\) as a \(D\)-module, under the map \(\pi: \text{spec } O_X \rightarrow \text{spec } O_X^{G(r,n)}\), where \(O_X^{G(r,n)}\) is the ring of invariant polynomials under the action of the wreath product \(G(r,p) := \mathbb{Z}/r\mathbb{Z} \wr S_n\). We first describe the generators of the simple components of \(\pi_+(O_X)\) and give their multiplicities. Using an equivalence of categories and the higher Specht polynomials, we describe a \(D\)-module decomposition of the polynomial ring localized at the discriminant of \(\pi\). Furthermore, we study the action of invariants differential operators on the higher Specht polynomials.

1. Introduction

A fundamental problem in representation theory is the description of all irreducible representations. In this paper, we are interested in the polynomial representation of invariant differential operators with respect to the generalized symmetric group. It is well known by the decomposition theorem that the direct image of a simple module for a proper map is semi-simple [5]. The simplest case is when the map \(\pi: X = \text{spec } B \rightarrow Y = \text{spec } A\) is finite, in which case it is easy to give a basic and entirely algebraic proof, using essentially the (generic) correspondence with the differential Galois group, which equals the ordinary Galois group \(G\). The irreducible submodules of the direct image are in one-to-one correspondence with the irreducible representations of \(G\) (see [10]). In this paper, we make the differential structure more explicit in the case of the invariants of the complex reflection group \(G(r,n)\), \(B = \mathbb{C}[x_1, \ldots, x_n] \subset A = \mathbb{C}[x_1, \ldots, x_n]^{G(r,n)}\).

We explicitly study the simple component of the direct image \(\pi_+(O_X)\) of the polynomial ring \(O_X\) as a \(D\)-module under the map \(\pi: \text{spec } O_X \rightarrow \text{spec } O_Y\) where \(O_Y = O_X^{G(r,n)}\); the ring of invariant polynomials under the action of \(G(r,n)\). We describe the generators of the simple components of \(\pi_+(O_X)\) and their multiplicities as in [10]. We thus establish the decomposition structure of \(\pi_+(O_X)\) by means of the higher Specht polynomials. This proof uses the fact that the irreducible
\(\mathcal{D} \)-submodules of \(\pi_+ (\mathcal{O}_X) \) are in one-to-one correspondence with irreducible representations of \(G(r, n) \).

Secondly, we elaborate a \(\mathcal{D} \)-module decomposition of the polynomial ring localized at the discriminant of \(\pi \). Finally, we describe the action of invariant differential operators on higher Specht polynomials. The higher Specht polynomials (introduced combinatorially [1]), are adapted to the \(\mathcal{D} \)-module structure.

This paper generalizes the results on modules over the Weyl algebra appeared in \([10]\) and \([12]\). The case \(r = 2 \) have been presented at the 10th International Conference on Mathematical Modeling in Physical Sciences to describe the action of the rational Olshanetsky-Perelomov operator Hamiltonian on polynomials \([13]\).

2. Preliminaries

2.1. Direct image. In this section, we briefly recall the definition of the direct image of a \(\mathcal{D} \)-module \([4]\). Let \(K \) be a field of characteristic zero, put \(X = K^n \). The polynomial ring \(K[x_1, \ldots, x_n] \) will be denoted by \(K[X] \); and the Weyl algebra generated by \(x_i \)'s and \(\frac{\partial}{\partial x_i} \)'s by \(\mathcal{D}_X \). The \(n \)-tuple \((x_1, \ldots, x_n)\) will be denoted by \(X \). Similar conventions will holds for \(Y = K^m \), with polynomial ring \(K[Y] \) and Weyl algebra \(\mathcal{D}_Y \).

Let \(\pi : X \to Y \) be a polynomial map, with \(\pi = (\pi_1, \ldots, \pi_m) \). Let \(M \) be a left \(\mathcal{D}_Y \)-module. The inverse image of \(M \) under the map \(\pi \) is \(\pi^-(M) = K[X] \otimes_{K[Y]} M \). This is a \(K[X] \)-module. It becomes a \(\mathcal{D}_X \)-module with \(\partial_{x_i} \) acting according to the formula

\[
\frac{\partial}{\partial x_i} (h \otimes u) = \frac{\partial h}{\partial x_i} \otimes u + \sum_{j=1}^{m} \frac{\partial \pi_j}{\partial x_i} \otimes \frac{\partial}{\partial y_j} u, \ h \in K[X], u \in M.
\]

Since \(\mathcal{D}_Y \otimes_{\mathcal{D}_Y} M \cong M \), we have

\[
\pi^+(M) \cong K[X] \otimes_{K[Y]} \mathcal{D}_Y \otimes_{\mathcal{D}_Y} M = \pi^+(K[Y]) \otimes \mathcal{D}_Y M.
\]

Denoting \(\mathcal{D}_{X \to Y} \) by \(\pi^+(K[Y]) \), on has that \(\pi^+(M) = \mathcal{D}_{X \to Y} \otimes \mathcal{D}_Y M \). Note that \(\mathcal{D}_{X \to Y} \) is \(\mathcal{D}_X \cdot \mathcal{D}_Y \)-bimodule. Let \(N \) be a right \(\mathcal{D}_X \)-module. The tensor product

\[
\pi_+(N) = N \otimes_{\mathcal{D}_X} \mathcal{D}_{X \to Y}
\]

is a right \(\mathcal{D}_Y \)-module, which is called the direct image of \(N \) under the polynomial map \(\pi \). Let us consider the standard transposition \(\tau : \mathcal{D}_X \to \mathcal{D}_X \) defined by \(\tau(h\partial^a) = (-1)^{|a|}\partial^a h \), where \(h \in K[X] \) and \(a \in \mathbb{N}^n \). If \(N \) is a right \(\mathcal{D}_X \)-module then we defined a left \(\mathcal{D}_X \)-module \(N^t \) as follows. As an abelian group, \(N^t = N \). If \(a \in \mathcal{D}_X \) and \(u \in N^t \) then the left action of \(a \) on \(u \) is defined by \(a \cdot u = u\tau(a) \).

Using the standard transposition for \(\mathcal{D}_Y \) and \(\mathcal{D}_X \), put \(D_{Y \leftarrow X} = (\mathcal{D}_{X \to Y})^t \), this is a \(\mathcal{D}_Y \cdot \mathcal{D}_X \)-bimodule. Let \(M \) be a left \(\mathcal{D}_X \)-module. The direct image of \(M \) under \(\pi \) is defined by the formula

\[
\pi_+(M) = D_{Y \leftarrow X} \otimes_{\mathcal{D}_X} M.
\]

It is clear that \(\pi_+(M) \) is a \(\mathcal{D}_Y \)-module. The following is the decomposition theorem.
We recall some facts about the representation of the generalized symmetric group (holonomic) module over D_Z. Higher Specht Polynomials for Reflection group.

2.2. Theorem 2.1. [5] Let $\pi : X \to Y$ be a finite polynomial map. If M is a a simple (holonomic) module over D_X. Then $\pi_+(M)$ is a semisimple D_Y-module. we have

$$\pi_+(M) = \oplus M_i^{o_i},$$

where the M_i are inequivalent irreducible D_Y-submodules.

2.2. Higher Specht Polynomials for Reflection group.

In this subsection we recall some facts about the representation of the generalized symmetric group $G(r,n)$ [1].

Let S_n be the group of permutations of the set $\{1,\ldots,n\}$ and $\mathbb{Z}/r\mathbb{Z}$ be the cyclic group of order r. The generalized symmetric group $G(r,n)$ is the semi-direct product of $(\mathbb{Z}/r\mathbb{Z})^n$ with S_n, written as $\mathbb{Z}/r\mathbb{Z} \rtimes S_n$, where $(\mathbb{Z}/r\mathbb{Z})^n$ is the direct product of n copies of $\mathbb{Z}/r\mathbb{Z}$. Let ξ be a primitive r-th root of 1. $(\mathbb{Z}/r\mathbb{Z})^n \rtimes S_n = \{ (\xi^{i_1},\ldots,\xi^{i_n};\sigma) \mid i_k \in \mathbb{N}, \sigma \in S_n \}$, whose product is given by

$$(\xi^{i_1},\ldots,\xi^{i_n};\sigma)(\xi^{j_1},\ldots,\xi^{j_n};\pi) = (\xi^{i_1+j_{\sigma^{-1}(1)}},\ldots,\xi^{i_n+j_{\sigma^{-1}(n)} }; \sigma\pi).$$

Let $O_X = \mathbb{C}[x_1,\ldots,x_n]$ be the ring of polynomials in n indeterminates on which the group $G(r,n)$ acts as follows:

$$(\xi^{i_1},\ldots,\xi^{i_n};\sigma)f = f(\xi^{i_\sigma(1)}x_\sigma(1),\ldots,\xi^{i_\sigma(n)}x_\sigma(n);\sigma),$$

where $f \in O_X$ and $(\xi^{i_1},\ldots,\xi^{i_n};\sigma) \in G(r,n)$. The fundamental invariants under this action are given by the elementary symmetric functions $e_j(x_1,\ldots,x_n)$, $1 \leq j \leq n$. Let J_+ be the ideal of O_X generated by these fundamental invariants and $\Lambda = O_X/J_+$ be the quotient ring. It is also known that the $G(r,n)$-module Λ is isomorphic to the group ring $\mathbb{C}[G(r,n)]$, namely, the left regular representation. A description of all irreducible components of Λ is known in [1], in terms of what is called ”higher Specht polynomials”. The irreducible representations of $G(r,n)$ are parametrized by the r-tuple of Young diagrams $(\lambda^1,\ldots,\lambda^r)$ with $|\lambda^1|+\cdots+|\lambda^r| = n$.

Let $P_{r,n}$ be the set of r-tuples of Young diagrams $\lambda = (\lambda^1,\ldots,\lambda^r)$ with $|\lambda^1|+\cdots+|\lambda^r| = n$. By filling each cell with a positive integer in such a way that every j $(1 \leq j \leq n)$ occurs once, we obtain an r-tableau $T = (T^1,\ldots,T^r)$ of shape $\lambda = (\lambda^1,\ldots,\lambda^r)$. When the number k occurs in the component T^{i_k}, we write $k \in T^{i_k}$. The set of r-tableaux of shape λ is denoted by $\text{Tab}(\lambda)$. An r-tableau $T = (T^1,\ldots,T^r)$ is said to be standard if the numbers are increasing on each column and each row of T^ν $(1 \leq \nu \leq r)$. The set of r-standard tableaux of shape λ is denoted by $\text{STab}(\lambda)$.

Let $S = (S^1,\ldots,S^r) \in \text{STab}(\lambda)$. We associate a word $w(S)$ in the following way. First, we read each column of the component S^1 from the bottom to the top starting from the left. We continue this procedure for tableau S^2 and so on. For a word $w(S)$, we define the index $i(w(S))$ inductively as follows. The number 1 in the word $w(S)$ has the index $i(1) = 0$. If the number k has index $i(k) = p$ and the number has number $k+1$ is sitting on the left (resp. right) of k, then $k+1$ has index $p+1$ (resp. p). Finally, assigning the indices to the corresponding cells, we get a shape $\lambda = (\lambda^1,\ldots,\lambda^r)$, each cell filled with a nonnegative integer, which is denoted by $i(S) = (i(S)^1,\ldots,i(S)^r)$.

Theorem 2.1. [5] Let $\pi : X \to Y$ be a finite polynomial map. If M is a a simple (holonomic) module over D_X. Then $\pi_+(M)$ is a semisimple D_Y-module. we have $$\pi_+(M) = \oplus M_i^{o_i},$$ where the M_i are inequivalent irreducible D_Y-submodules.
Let $T = (T^1, \ldots, T^r)$ be an r-tableau of shape λ. For each component T^ν ($1 \leq \nu \leq r$), the Young symmetrizer e_{T^ν} of T^ν is defined by

$$e_{T^\nu} = \frac{1}{\alpha_{T^\nu}} \sum_{\sigma \in R(T^\nu)} \sum_{\tau \in C(T^\nu)} \text{sgn}(\tau) \tau \sigma,$$

where α_{T^ν} is the product of the hook lengths for the shape λ^ν, $R(T^\nu)$ and $C(T^\nu)$ are the row-stabilizer and column-stabilizer of T^ν respectively.

We may regard a tableau T on a Young diagram λ as a map $T : \{\text{cells of } \lambda\} \to \mathbb{Z}_{\geq 0}$, which assigns to a cell ξ of λ the number $T^\nu(\xi)$ written in the cell ξ in T.

For $S \in \text{STab}(\lambda)$ and $T \in \text{Tab}(\lambda)$, Ariki, Terasoma, and Yamada defined in [1] the higher Specht polynomial for $G(r, n)$ by

$$F^S_T = \prod_{\nu=1}^r \left(e_{T^\nu}(x_{T^\nu}^{ri(S)^\nu}) \prod_{k \in T^\nu} x_k^{\nu} \right),$$

where

$$x_{T^\nu}^{ri(S)^\nu} = \prod_{\xi \in \lambda^\nu} x_{T^\nu(\xi)}^{ri(S)^\nu(\xi)}.$$

The following is the fundamental result in [1] on the higher Specht polynomials for $G(r, n)$.

Theorem 2.2. (1) The space $V_S(\lambda) = \sum_{T \in \text{Tab}(\lambda)} \mathbb{C}F^S_T$ affords an irreducible representation of the reflection group $G(r, n)$.

(2) The set $\{F^S_T \mid T \in \text{STab}(\lambda)\}$ gives a basis over \mathbb{C} for $V_S(\lambda)$.

(3) For $S_1 \in \text{STab}(\lambda)$ and $S_2 \in \text{STab}(\mu)$, the representation $V_{S_1}(\lambda)$ and $V_{S_2}(\mu)$ are isomorphic if and only if S_1 and S_2 has the same shape, i.e. $\lambda = \mu$.

(4) We have the irreducible decomposition

$$\mathbb{C}[G(r, n)] = \bigoplus_{\lambda \in P_r, n} \bigoplus_{S \in \text{STab}(\lambda)} V_S(\lambda)$$

as a representation of $G(r, n)$.

Theorem 2.3. The higher Specht polynomials in $\mathcal{F} = \{F^S_T \mid S, T \in \text{STab}(\lambda), \lambda \vdash n\}$ form a basis of the $\mathbb{C}[x_1, \ldots, x_n]^{G(r, n)}$-module $\mathbb{C}[x_1, \ldots, x_n]$.

3. Decomposition Theorem

We are interested in studying the decomposition structure of $\pi_+(M)$, where $M = O_X$, $\pi : X = \text{spec}(O_X) \to Y = \text{spec}(O_X^{G(r, n)})$. Since O_X is a holonomic \mathcal{D}_X-module [4, Chapter 10], $\pi_+(O_X)$ is a semisimple \mathcal{D}_Y-module by the decomposition theorem. We construct the simple components of $\pi_+(O_X)$ and provide their multiplicities. Let us recall some useful facts from [10].
Let $\Delta := \text{Jac}(\pi)$ be the Jacobian of π, Δ^2 the discriminant of π, we denote the complement of the branch locus and the discriminant by U and V, respectively. Assume now that U,V are such that the respective canonical modules are generated by the volume forms dx, and dy, related by $dx = \Delta dy$, where Δ is the Jacobian of π.

Proposition 3.1.
(i) There is an isomorphism of \mathcal{D}_V-modules
$$T : \pi_+(O_U) \cong O_U, \quad r(dy^{-1} \otimes dx) \mapsto r\Delta^{-1}.$$
(ii) $T(\pi_+(O_X))$ is isomorphic as a \mathcal{D}_Y-module to $\pi_+(O_X)$.

Proof. See [10, Lemma 2.3].

It is more convenient to study $T(\pi_+(O_X)) \cong \pi_+(O_X)$, as a submodule of O_U, than using the definition of $\pi_+(O_X)$. Therefore, to reach our goal, we will first study the decomposition of O_U into irreducible components as a \mathcal{D}_V-module.

Proposition 3.2. Let $\pi : X \to Y$ be a finite map. Then
(i) $\pi_+(O_X)$ is semi-simple as a \mathcal{D}_Y-module.
(ii) If $\pi_+(O_X) = \oplus M_k$, $k \in I$ is a decomposition into simple (non-zero) \mathcal{D}_Y-modules, then $\pi_+(O_U) = \oplus i^+(M_k)$, $k \in I$, is a decomposition of $\pi_+(O_U)$ into simple (non-zero) \mathcal{D}_V-modules.

Proof. See [10, Proposition 2.8].

3.1. **Action description.** As we want to study the polynomial representation of a ring of invariant differential operators localized at Δ^2, it is convenient to precisely describe the action of that ring on the polynomial ring.

Let $\mathcal{D}_X = \mathbb{C}\langle x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle$ be the ring of differential operators associated with the polynomial ring $O_X = \mathbb{C}[x_1, \ldots, x_n]$, and $O_Y = \mathbb{C}[x_1, \ldots, x_n]^{G(r,n)} = \mathbb{C}[y_1, \ldots, y_n]$ be the ring of invariant polynomials under the real reflection group $G(r,n)$. We denote by $\mathcal{D}_Y = \mathbb{C}\langle y_1, \ldots, y_n, \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n} \rangle$ the ring of differential operators associated with $O_Y = \mathbb{C}[y_1, \ldots, y_n]$. By [9], \mathcal{D}_Y is the ring of invariant differential operators under the action of the reflection group $G(r,n)$.

Notations, We adopt the following notations
$$O_U := \mathbb{C}[x_1, \ldots, x_n, \Delta^{-1}], \quad O_V := \mathbb{C}[y_1, \ldots, y_n, \Delta^{-2}], \quad \mathcal{D}_V := \mathbb{C}\langle y_1, \ldots, y_n, \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n}, \Delta^{-2} \rangle.$$

Lemma 3.3. O_U is a \mathcal{D}_V-module.

Proof. Let us make clear the action of \mathcal{D}_V on O_U.

Let $A = \left(\frac{\partial y_j}{\partial x_i} \right)_{1 \leq i, j \leq n}$ so that $\det(A) = \Delta$. We get the following equation

$$
\begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{pmatrix} = A
\begin{pmatrix}
\frac{\partial}{\partial y_1} \\
\vdots \\
\frac{\partial}{\partial y_n}
\end{pmatrix}.
$$

It follows that

$$
\begin{pmatrix}
\frac{\partial}{\partial y_1} \\
\vdots \\
\frac{\partial}{\partial y_n}
\end{pmatrix} = A^{-1}
\begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{pmatrix},
$$

and it is now clear that \mathcal{O}_U is a \mathcal{D}_V-module.

We know that \mathcal{O}_U a \mathcal{D}_V-semisimple module. What are the simple components of \mathcal{O}_U as \mathcal{D}_V-module and their multiplicities?

3.2. Simple components and their multiplicities

In this section, we state our main result. We use the representation theory of the generalized symmetric group $G(r, n)$ to yield results on modules over the ring of differential operators. It is well-known that

$$
\mathcal{O}_X = \mathbb{C}[G(r, n)] \otimes \mathcal{O}_Y \text{ as } \mathcal{O}_Y\text{-modules}.
$$

Let us consider the multiplicative closed set $S = \{\Delta^k\}_{k \in \mathbb{N}} \subset \mathcal{O}_X$. It follows that:

$$
S^{-1}\mathcal{O}_X = \mathbb{C}[G(r, n)] \otimes S^{-1}\mathcal{O}_Y \text{ as } S^{-1}\mathcal{O}_Y\text{-modules}.
$$

where $S^{-1}\mathcal{O}_X$ and $S^{-1}\mathcal{O}_Y$ are the localizations of \mathcal{O}_X and \mathcal{O}_Y at S respectively. But $S^{-1}\mathcal{O}_X = \mathcal{O}_V$ and $S^{-1}\mathcal{O}_Y = \mathcal{O}_V$, whereby we get

$$
\mathcal{O}_U = \mathbb{C}[G(r, n)] \otimes \mathcal{O}_V \text{ as } \mathbb{C}[G(r, n)]\text{-modules}.
$$

Lemma 3.4. There exists an injective map

$$
\mathbb{C}[G(r, n)] \hookrightarrow \text{Hom}_\mathbb{C}(\mathcal{O}_U, \mathcal{O}_U).
$$

Proof. The $\mathbb{C}[G(r, n)]$-module $\mathbb{C}[G(r, n)]$ acts faithfully on itself by multiplication, and this multiplication yields an injective map $\mathbb{C}[G(r, n)] \hookrightarrow \text{Hom}_\mathbb{C} \left(\mathbb{C}[G(r, n)], \mathbb{C}[G(r, n)] \right)$.

Since \mathcal{O}_V is invariant under this action of $\mathbb{C}[G(r, n)]$, we get the expected injective map. \hfill \Box

Proposition 3.5. There exists an injective map

$$
\mathbb{C}[G(r, n)] \hookrightarrow \text{Hom}_{\mathcal{D}_V}(\mathcal{O}_U, \mathcal{O}_U).
$$

Proof. Since $\mathcal{D}_V = \mathbb{C}\langle y_1, \ldots, y_n, \partial y_1, \ldots, \partial y_n, \Delta^{-2} \rangle$, we only need to show that every element of $\mathbb{C}[G(r, n)]$ commutes with $y_1, \ldots, y_n, \partial y_1, \ldots, \partial y_n$.

- It is clear that every element of $\mathbb{C}[G(r, n)]$ commutes with y_i, $i = 1, \ldots, n$.
Let us show that every element of $\mathbb{C}[G(r, n)]$ commutes with ∂y_i, $i = 1, \ldots, n$. Let D be a derivation on the field $K = \mathbb{C}(y_1, \ldots, y_n)$ of fractions of O_V, then (K, D) is a differential field. Let $L = \mathbb{C}(x_1, \ldots, x_n)$ be the field of fractions of O_U. We have that $K = L^{G(r, n)}$ is the fixed field and L is a Galois extension of K, with Galois group $G(r, n)$. Then by [3, Théorème 6.2.6] there exists a unique derivation on L which extends D, then (L, D) is also a differential ring. In this way, $\sigma^{-1}D\sigma = D$ for every $\sigma \in G(r, n)$. Therefore, $\sigma D = D\sigma$ and σ commute with D.

Corollary 3.6.

\[\mathbb{C}[G(r, n)] \cong \text{Hom}_{O_U}(O_U, O_U) \]

Proof. see [10, Corollary 26]

Before we state our main result, let us recall some facts.

By Maschke's Theorem [8, Chap XVIII], we know that $\mathbb{C}[G(r, n)]$ is a semi-simple ring, and

\[\mathbb{C}[G(r, n)] = \bigoplus_{\lambda \in \mathcal{P}_{r,n}} R_{\lambda}, \]

where $\mathcal{P}_{r,n}$ be the set of r-tuples of Young diagrams and R_{λ} are simple rings.

$R_{\lambda} = \bigoplus_{s \in \text{STab}(\lambda)} V_s(\lambda)$ (see Theorem 2.2). We have the following corresponding decomposition of the identity element of $\mathbb{C}[G(r, n)]$:

\[1 = \sum_{\lambda \in \mathcal{P}_{r,n}} r_{\lambda}, \]

where r_{λ} is the identity element of R_{λ}, with $r_{\lambda}^2 = 1$ and $r_{\lambda r_{\mu}} = 0$ if $\lambda \neq \mu$.

$\{r_{\lambda}\}_{\lambda \in \mathcal{P}_{r,n}}$ is the set of primitive central idempotents of $\mathbb{C}[G(r, n)]$. In fact $R_{\lambda} = r_{\lambda}\mathbb{C}[G(r, n)]$, for $\lambda \in \mathcal{P}_{r,n}$. Let $n \in \mathbb{N}^*$, $\lambda \in \mathcal{P}_{r,n}$, we set $\text{Tab}(n) = \bigcup_{\lambda \in \mathcal{P}_{r,n}} \text{Tab}(\lambda)$ and $\text{STab}(n) = \bigcup_{\lambda \in \mathcal{P}_{r,n}} \text{STab}(\lambda)$.

Theorem 3.7. For every primitive idempotent $e \in \mathbb{C}[G(r, n)]$.

1. eO_U is a nontrivial D_V-submodule of O_U,
2. The D_V-module eO_U is simple,
3. There exist $\lambda \in \mathcal{P}_{r,n}$ and a higher Specht polynomial F^S_T (with $S, T \in \text{STab}(\lambda)$) such that $eO_U = D_V F^S_T$.

Proof.

1. Let $e \in \mathbb{C}[G(r, n)]$ be a primitive idempotent, we know that $\mathbb{C}[G(r, n)]e$ is a $G(r, n)$-irreducible representation. Theorem 2.3 states that there is $\lambda \in \mathcal{P}_{r,n}$ and $S \in \text{STab}(\lambda)$ such that $\mathbb{C}[G(r, n)]e \cong V_S(\lambda)$, with $V_S(\lambda) \subset O_U$. By [2, Chap III, §4, Theorem 3.9], we have $e\mathbb{C}[G(r, n)]e \cong \mathbb{C}e \neq \{0\}$. $\{0\} \neq eV_S(\lambda) \subset eO_U$. Since e commutes with every element of D_V and O_U is a D_V-module, it follows that eO_U is a nontrivial D_V-module.

In fact $V_S(\lambda)$ is a cyclic $\mathbb{C}[G(r, n)]$-module, i.e., there exist $T, S \in \text{STab}(\lambda)$
and a higher Specht polynomial F_T^S such that $V_S(\lambda) = \mathbb{C}[G(r,n)]F_T^S$, so that $\mathbb{C}[G(r,n)]e \cong \mathbb{C}[G(r,n)]F_T^S$. Then it follows that there is a higher Specht polynomial F_T^S such that eF_T^S is a scalar multiple of F_T^S.

(2) Assume that $1 = \sum_{i=1}^s e_i$ where the $\{e_i\}_{1 \leq i \leq s}$ is the set of primitive idempotents of $\mathbb{C}[G(r,n)]$, then $\mathcal{O}_U = \sum_{i=1}^s e_i \mathcal{O}_U$. Let $m \in e_i \mathcal{O}_U \cap e_j \mathcal{O}_U$ with $i \neq j$ so that $m = e_i m$ and $m = e_j m$, but $e_i e_j = 0$ then $e_i m = e_i e_j m = 0$ hence $m = 0$. Therefore $\mathcal{O}_U = \bigoplus_{i=1}^s e_i \mathcal{O}_U$ and we get:

$$\text{Hom}_{\mathcal{D}_V}(\mathcal{O}_U, \mathcal{O}_U) \cong \bigoplus_{i,j=1}^s \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U),$$

by Corollary 3.6 we know that $\mathbb{C}[G(r,n)] \cong \bigoplus_{i,j=1}^s \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U)$. For every $\lambda \in \mathcal{P}_{r,n}$, we pick a unique irreducible representation $V_S(\lambda)$, for a certain $S \in \text{STab}(\lambda)$, which we denote by $V(\lambda) := V_S(\lambda)$. We also have, by [6, Proposition 3.29], that $\mathbb{C}[G(r,n)] \cong \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \text{End}_\mathbb{C}(V(\lambda))$. But by the Wedderburn’s decomposition Theorem [2, Chap II,§4, Theorem 4.2] we also know that

$$\mathbb{C}[G(r,n)] = \bigoplus_{\lambda \in \mathcal{P}_{r,n}} r_\lambda \mathbb{C}[G(r,n)] \quad \text{and} \quad r_\lambda \mathbb{C}[G(r,n)] \cong \text{Mat}_f(\mathbb{C}) \cong \text{End}_\mathbb{C}(\mathbb{C}^{f_{\lambda}})$$

where $f^{\lambda} = \dim_{\mathbb{C}}(V(\lambda))$. Each r standard tableau T corresponds to a primitive idempotent e_T, so that $r_\lambda = \sum_{T \in \text{STab}(\lambda)} e_T$. In what follows we denote e_i the primitive idempotent associated with standard tableau T_i, (i.e., $e_i = e_{T_i}$.) Let us show that

$$\mathbb{C}[G(r,n)] \cong \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \left(\bigoplus_{T_i, T_j \in \text{STab}(\lambda)} \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \right) \quad \text{where} \quad e_i = e_{T_i}.$$

Let x be an element of $\mathbb{C}[G(r,n)]$ and r_λ the primitive central idempotent associated with $\lambda \in \mathcal{P}_{r,n}$. Then x induces a \mathcal{D}_V-homomorphism $\mathcal{O}_U \rightarrow \mathcal{O}_U, m \mapsto x \cdot m$; the multiplication by x. Since r_λ is in the centre of $\mathbb{C}[G(r,n)]$, $x \cdot (r_\lambda \mathcal{O}_U) = (x \cdot r_\lambda) \mathcal{O}_U \subset r_\lambda \mathcal{O}_U$, which means $x \in \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \text{Hom}_{\mathcal{D}_V}(r_\lambda \mathcal{O}_U, r_\lambda \mathcal{O}_U)$. It follows that

$$\text{Hom}_{\mathcal{D}_V}(\mathcal{O}_U, \mathcal{O}_U) \cong \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \text{Hom}_{\mathcal{D}_V}(r_\lambda \mathcal{O}_U, r_\lambda \mathcal{O}_U).$$

Then $\text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) = \{0\}$ if $T_i \in \text{STab}(\lambda_i), T_j \in \text{STab}(\lambda_j)$ and $\lambda_i \neq \lambda_j$. We get that

$$\text{Hom}_{\mathcal{D}_V}(\mathcal{O}_U, \mathcal{O}_U) \cong \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \left(\bigoplus_{T_i, T_j \in \text{STab}(\lambda)} \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \right).$$
The number of direct factors in the sum \(\bigoplus_{r_i,T_j \in \text{STab}(\lambda)} \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \) is \((f^\lambda)^2\).

Let us show that \(\text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \cong \mathbb{C} \) if \(T_i, T_j \in \text{Tab}(\lambda) \). Consider the following commutative diagram:

\[
\begin{array}{ccc}
\mathbb{C}[G(r,n)] & \xrightarrow{\phi} & \text{Hom}_{\mathcal{D}_V}(\mathcal{O}_U, \mathcal{O}_U) \\
\alpha_{\lambda} \downarrow & & \downarrow \beta_{\lambda} \\
r_{\lambda}\mathbb{C}[G(r,n)] & \xrightarrow{\psi} & \text{Hom}_{\mathcal{D}_V}(r_{\lambda}\mathcal{O}_U, r_{\lambda}\mathcal{O}_U)
\end{array}
\]

where \(\beta_{\lambda} : \bigoplus_{\mu \in \mathcal{P}_{r,n}} \text{Hom}_{\mathcal{D}_V}(r_\mu \mathcal{O}_U, r_\mu \mathcal{O}_U) \to \text{Hom}_{\mathcal{D}_V}(r_{\lambda}\mathcal{O}_U, r_{\lambda}\mathcal{O}_U) \) and \(\alpha_{\lambda} : \bigoplus_{\mu \in \mathcal{P}_{r,n}} r_\mu \mathbb{C}[G(r,n)] \to r_{\lambda}\mathbb{C}[G(r,n)] \) are canonical projections et \(\phi \) is the isomorphism in Corollary 3.6. It follows that \(\psi \) is an isomorphism hence \(r_{\lambda}\mathbb{C}[G(r,n)] \cong \text{Hom}_{\mathcal{D}_V}(r_{\lambda}\mathcal{O}_U, r_{\lambda}\mathcal{O}_U) \).

Now we identify \(r_{\lambda}\mathbb{C}[G(r,n)] \) with either the set \(\text{Mat}_{f^\lambda}(\mathbb{C}) \) of square matrices of order \(f^\lambda \) with coefficients in \(\mathbb{C} \) either with \(\text{End}_\mathbb{C}(\mathbb{C}^{f^\lambda}) \). Let \(E_{ij} \) be the square matrix of order \(f^\lambda \) with 1 at the position \((i,j)\) and 0 elsewhere and \(E_i = E_{i,i} \), then we identify the primitive idempotent \(e_i \in r_{\lambda}\mathbb{C}[G(r,n)] \) with \(E_i \) in \(\text{Mat}_{f^\lambda}(\mathbb{C}) \). Let \(B = (a_{ij}) \in \text{Mat}_{f^\lambda}(\mathbb{C}) \) we get \(B = \sum_{i,j} a_{i,j} E_{i,j} = \sum_{i,j} E_i B E_j \), in fact \(E_i B E_j \) is the matrix with \(a_{i,j} \) in the position \((i,j)\) and 0 elsewhere, if \(R = \text{Mat}_{f^\lambda}(\mathbb{C}) \), we get that \(E_i R E_j \cong \mathbb{C} \).

This isomorphism \(\psi \) implies that

\[
\bigoplus_{r_i,T_j \in \text{STab}(\lambda)} E_i R E_j \cong \bigoplus_{r_i,T_j \in \text{STab}(\lambda)} \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U);
\]

the restriction of \(\psi \) to \(E_i R E_j \) yields a map \(E_i R E_j \to \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \) and this map is surjective, moreover we have \(E_i R E_j \cong \text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \).

Therefore \(\text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_j \mathcal{O}_U) \cong \mathbb{C} \). Let us assume that \(e_i \mathcal{O}_U \) is not a simple \(\mathcal{D}_V \)-module, then \(e_i \mathcal{O}_U \) may be written as \(e_i \mathcal{O}_U = \bigoplus_{i \in J} N_j \) where the \(N_j \) are simple \(\mathcal{D}_V \)-modules and \(|J| > 1\). It follows that \(\dim_\mathbb{C}(\text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_i \mathcal{O}_U)) \geq |J| \) but \(\text{Hom}_{\mathcal{D}_V}(e_i \mathcal{O}_U, e_i \mathcal{O}_U) \cong \mathbb{C} \) so we obtain that \(J = 1 \), which necessarily implies that \(e_i \mathcal{O}_U \) is a simple \(\mathcal{D}_V \)-module.

(3) By the the proof (i), there exists a higher Specht polynomial \(F_T^S \), with \(S,T \in \text{STab}(\lambda) \), where \(\lambda \vdash n \) such that \(e_i \mathcal{O}_U = \mathcal{D}_V F_T^S \).

\[\square \]

Corollary 3.8. With the above notations, \(e_i \mathcal{O}_U \cong \mathcal{D}_V e_j \mathcal{O}_U \) if only if \(T_i \) and \(T_j \) have the same shape i.e. if there is a partition \(\lambda \in \mathcal{P}_{r,n} \) such that \(T_i, T_j \in \text{STab}(\lambda) \).
Proof. The D_V-modules e_iO_U are simple and Hom$_{D_V}(e_iO_U, e_jO_U) \cong \mathbb{C}$ whenever there exists a partition $\lambda \in P_{r,n}$ such that $T_i, T_j \in \text{STab}(\lambda)$. Since Hom$_{D_V}(e_iO_U, e_jO_U) \neq \{0\}$, we conclude by using the Schur lemma.

Proposition 3.9. Let $\lambda \in P_{r,n}$, $T \in \text{STab}(\lambda)$, and let e be the primitive idempotent associated with T, denote by $F_T := F_T^S$ the corresponding higher Specht polynomial (for some $S \in \text{STab}(\lambda)$), in Theorem 3.7 (iii), such that $eO_U = D_VF_T^S$ then we have:

1. $O_U = \bigoplus_{T \in \text{STab}(\lambda)} \bigoplus_{\lambda \in P_{r,n}} D_VF_T$; (3.1)
2. for each $\lambda \in P_{r,n}$ fix an r-tableau $T^* \in \text{STab}(\lambda)$, then

 $O_U = \bigoplus_{\lambda \in P_{r,n}} f^\lambda D_VF_{T^*}$ (3.2)

where $f^\lambda = \dim_{\mathbb{C}}(V(\lambda))$

Proof. We have by the proof of Theorem 3.7 that

$$O_U = \bigoplus_{T \in \text{STab}(\lambda)} e_iO_U$$

and the e_iO_U are simple D_V-modules. Since to each primitive idempotent e_i corresponds an r-diagram $\lambda_i \in P_{r,n}$ and a tableau $T_i \in \text{STab}(\lambda_i)$ such that $e_iO_U = D_VF_{T_i}$ then $O_U = \bigoplus_{T \in \text{STab}(\lambda)} D_VF_T$. By Corollary 3.6, $D_VF_T \cong D_VF_{T_j}$ if $T_i, T_j \in \text{STab}(\lambda)$, and so we have f^λ isomorphic copies of $D_VF_{T^*}$ in the direct sum (3.1).

Using Proposition 3.1 and Proposition 3.2 we get the next theorem.

Theorem 3.10.

(i) $N_T = D_YF_T$ is an irreducible D_Y-submodule of $\pi_+(O_X)$.

(ii) There is a direct sum decomposition

$$\pi_+(O_X) = \bigoplus_{\lambda \in P_{r,n}} \bigoplus_{T \in \text{STab}(\lambda)} N_T$$ (3.3)

(iii)

$$\pi_+(O_X) \cong \bigoplus_{\lambda \in P_{r,n}} f^\lambda N_T^*$$ (3.4)

We get in Theorem 3.10 a decomposition of the $\pi_+(O_X)$ into irreducible D_Y-modules generated by the higher Specht polynomials.

4. USING CORRESPONDENCE BETWEEN G-REPRESENTATIONS AND D-MODULES

In this section, we use an equivalence of categories between group representations and modules over a differential ring to yield a better version of the decomposition of the polynomial ring as D_V-modules.
Lemma 4.1. Let $\lambda \in \mathcal{P}_{r,n}$, $S \in \text{STab}(\lambda)$, $V_S(\lambda)$ be the corresponding irreducible representation and e_T the primitive idempotent associated with an r-standard tableau $T \in \text{STab}(\lambda)$. Then $e_T(V_S(\lambda)) = \{e_T(m) | m \in V_S(\lambda)\}$ is a one-dimensional \mathbb{C}-vector space.

Proof. In fact we have
\[
e_T V_S(\lambda) \cong e_T \mathbb{C}[G(r,n)] e_T \\
\cong e_T \mathbb{C}[G(r,n)] e_T \\
\cong \mathbb{C} e_T \text{ by [2, Chap III, §4, Theorem 3.9]}
\]

Recall that if M is a semi-simple module over a ring R, and N is simple R-module, then the isotopic component of M associated to N is the sum $\sum N' \subset M$ of all $N' \subset M$ such that $N' \cong N$.

Lemma 4.2. Let $\lambda \in \mathcal{P}_{r,n}$, $S \in \text{STab}(\lambda)$ and $V_S(\lambda)$ be the corresponding irreducible module associated. Let $M := \mathcal{O}_V$ and $M(\lambda)$ be the isotopic component of M (as \mathcal{O}_V-module) associated with $V_S(\lambda)$. Then $M(\lambda)$ is \mathcal{D}_V-module.

Proof. We only have to prove that $\mathcal{D}_V \cdot M(\lambda) \subset M(\lambda)$. Let $D \in \mathcal{D}_V$ and N be a $\mathbb{C}[G(r,n)]$-module isomorphic to $V_S(\lambda)$, since D commute with the elements of the group algebra $\mathbb{C}[G(r,n)]$. D is an $\mathbb{C}[G(r,n)]$-homomorphism from N into $D(N)$. Then by virtue of the Schur lemma $D(N) = 0$ or $D(N) \cong N$ as a $\mathbb{C}[G(r,n)]$-module, and $D(N) \subset M(\lambda)$. Hence $\mathcal{D}_V \cdot M(\lambda) \subset M(\lambda)$. \hfill \Box

Lemma 4.3. Let $\lambda \in \mathcal{P}_{r,n}$, $S \in \text{STab}(\lambda)_d$, $M(\lambda)$ the isotopic component associated with $V_S(\lambda)$ and e_T the primitive idempotent associated with an r-standard tableau T. Then $e_T(M(\lambda))$ is \mathcal{D}_V-module.

Proof. Let $D \in \mathcal{D}_V$, we have $D(e_T(M(\lambda))) = e_T(D(M(\lambda))) \subset e_T(M(\lambda))$, so $e_T(M(\lambda))$ is \mathcal{D}_V-module. \hfill \Box

Before we proceed, let us recall the correspondence between G-representations and D-modules [10, Paragraph 2.4]. Let L and K be two extensions fields a field k, denote by $T_{K/k}$ the k-linear derivations of K. We say that a $T_{K/k}$-module M is L-trivial if $L \otimes_K M \cong L^n$ as $T_{L/k}$-modules. Denote by $\text{Mod}^L(T_{K/k})$ the full subcategory of finitely generated $T_{K/k}$-modules that are L-trivial. It is immediate that it is closed under taking submodules and quotient modules. Using a lifting ϕ, L may be thought of as a $T_{K/k}$-module. If G is a finite group let $\text{Mod}(k[G])$ be the category of finite-dimensional representations of $k[G]$. Let now $k \to K \to L$ be a tower of fields such that $K = L^G$. Note that the action of $T_{K/k}$ commutes with the action of G. If V is a $k[G]$-module, $L \otimes_k V$ is a $T_{K/k}$-module by $D(l \otimes v) = D(l) \otimes v$, $D \in T_{K/k}$, and $(L \otimes_k V)^G$ is a $T_{K/k}$-submodule.

Let L and K be two fields, say that a $T_{K/k}$-module M is L-trivial if $L \otimes_K M \cong L^n$ as $T_{L/k}$-modules. Denote by $\text{Mod}^L(T_{K/k})$ the full subcategory of finitely generated $T_{K/k}$-modules that are L-trivial. It is immediate that it is closed under taking submodules and quotient modules. Using the lifting ϕ, L may be thought
of a $T_{K/k}$-module. If G is a finite group let $\text{Mod}(k[G])$ be the category of finite-dimensional representations of $k[G]$. Let now $k \to K \to L$ be a tower of fields such that $K = L^G$. Note that the action of $T_{K/k}$ commutes with the action of G. If V is a $k[G]$-module, $L \otimes_k V$ is a $T_{K/k}$-module by $D(l \otimes v) = D(l) \otimes v$, $D \in T_{K/k}$, and $(L \otimes_k V)^G$ is a $T_{K/k}$-submodule.

Proposition 4.4. The functor

$$\nabla : \text{Mod}(k[G]) \to \text{Mod}(T_{K/k}), \quad V \mapsto (L \otimes_k V)^G$$

is fully faithful, and defines an equivalence of categories

$$\text{Mod}(k[G]) \to \text{Mod}^L(T_{K/k}).$$

The quasi-inverse of ∇ is the functor

$$\text{Loc} : \text{Mod}^L(T_{K/k}) \to \text{Mod}(k[G]), \quad \text{Loc}(M) = (L \otimes_K M)^{\phi(T_{K/k})}.$$

Proof. see [10, Proposition 2.4] □

In the following proposition we take $G = G(r, n)$, $K := \mathbb{C}(y_1, \ldots, y_n)$ the field of fractions of \mathcal{O}_V and $L = \mathbb{C}(x_1, \ldots, x_n)$ the field of fractions of \mathcal{O}_U so that $K = L^{G(r,n)}$. It is clear that L is a Galois extension of K with Galois $G(r,n)$.

Proposition 4.5. Let $\lambda \in \mathcal{P}_{r,n}$ $S \in \text{STab}(\lambda)$, $V_S(\lambda)$ be the corresponding irreducible representation and e_T the primitive idempotent associative with an r-standard tableau T.

Set $M_T := e_T \mathcal{O}_U$. Then we have:

1. $M_T = \nabla(V_S(\lambda))$
2. $M_T = e_T(M(\lambda))$ is simple \mathcal{D}_V-module;
3. $M(\lambda) = \bigoplus_{T \in \text{STab}(\lambda)} e_T(M(\lambda)).$

Proof.

1. Let us consider the right $\mathbb{C}[G(r,n)]$-module $V = e_T \mathbb{C}[G(r,n)]$ where $T \in \text{STab}(\lambda)$. This is the image of $\mathbb{C}[G(r,n)]$ by right multiplication map $e_T : \mathbb{C}[G(r,n)] \to \mathbb{C}[G(r,n)]$. By [10, Example 2.5], we may turn this map to a left multiplication $\mathbb{C}[G(r,n)]^r \to \mathbb{C}[G(r,n)]^r$ and get an image which is isomorphic to $V_S(\lambda)$ for some $S \in \text{STab}(\lambda)$. So we get an induced map

$$\nabla(\mathbb{C}[G(r,n)]^r) \to \nabla(V_S(\lambda)) \subset \nabla(\mathbb{C}[G(r,n)]^r),$$

which is a multiplication by e_T according to [10, Example 2.5]. Then $\nabla(V_S(\lambda))$ is egal to $e_T \mathcal{O}_U = M_T$.

2. Since $V_S(\lambda)$ is a simple $\mathbb{C}[G(r,n)]$-module, $\nabla(V_S(\lambda))$ is also a simple \mathcal{D}_V-module.

3. follows from the fact that $1 = \sum_{T \in \text{STab}(\lambda)} e_T$ and $e_T(M(\lambda)) = 0$ if $T \notin \text{STab}(\lambda)$. □

Theorem 4.6. Let T be an r-standard tableau of shape λ where $\lambda \in \mathcal{P}_{r,n}$ and M_T be as in the above proposition. Then
(1) \(M_T = \bigoplus_{S \in \text{STab}(\lambda)} \mathcal{O}_V F_T^S \) as \(\mathcal{D}_V \)-module,

(2) \(\mathcal{O}_U = \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \left(\bigoplus_{S,T \in \text{STab}(\lambda)} \mathcal{O}_V F_T^S \right) \) as a \(\mathcal{D}_V \)-module.

Proof. (1) For \(S \in \text{STab}(\lambda) \) we know by Theorem 2.2 that the polynomial \(F_T^S \) generate a \(\mathbb{C}[G(r,n)] \)-module inside \(\mathcal{O}_U \) which is isomorphic to \(V(\lambda) \). Then \(F_T^S \in M^\lambda \) and \(M^\lambda = \bigoplus_{S,T \in \text{STab}(\lambda)} \mathbb{C}[G(r,n)] F_T^S \mathcal{O}_V \). Moreover \(e_T(F_T^S) = c F_T^S \), \(c \in \mathbb{C} \) and by Lemma 4.1 \(e_T(\mathbb{C}[G(r,n)] F_T^S) = c F_T^S \). Hence \(M_T = e_T(M^\lambda) = \bigoplus_{S \in \text{STab}(\lambda)} \mathcal{O}_V F_T^S \).

(2) follows from Proposition 3.9.

\[\square \]

Theorem 4.7. Let \(\lambda \in \mathcal{P}_{r,n} \) and \(D \in \mathcal{D}_V \) such that \(D(F_T^S) \neq 0 \) for a higher Specht polynomial \(F_T^S \) with \(S,T \in \text{STab}(\lambda) \). Then the image of the \(\mathbb{C}[G(r,n)] \)-module \(V_S(\lambda) \) by \(D \) is an \(\mathbb{C}[G(r,n)] \)-module isomorphic to \(V_S(\lambda) \). In others words, the actions of the differential operators of \(\mathcal{D}_V \) on the higher Specht polynomials generate isomorphic copies of the corresponding irreducible \(\mathbb{C}[G(r,n)] \)-module.

Proof. Let \(\lambda \in \mathcal{P}_{r,n}, D \in \mathcal{D}_V \) such that \(D(F_T^S) \neq 0 \) for \(S,T \in \text{STab}(\lambda) \) and set \(W_D^S(\lambda) = D(V_S(\lambda)) \) the image of the module \(V_S(\lambda) \) under the map \(D \). By Theorem 2.2, the \(\mathbb{C} \)-vector space \(V_S(\lambda) \) is equipped with a basis \(\mathcal{F} = \{ F_T^S; T \in \text{STab}(\lambda) \} \), then \(W_D^S(\lambda) \) is the vector space spanned by the set \(\{ D(F_T^S); T \in \text{STab}(\lambda) \} \). The elements of \(\{ F_T^S; T \in \text{STab}(\lambda) \} \) are linearly independent over \(\mathcal{D}_V \), otherwise the direct sum in Theorem 4.7 cannot hold. It follows that the elements \(\{ D(F_T^S); T \in \text{STab}(\lambda) \} \) are linear independent over \(\mathbb{C} \). Hence \(\{ D(F_T^S); T \in \text{STab}(\lambda) \} \) is a basis of \(W_D^S(\lambda) \) over \(\mathbb{C} \). Since \(D \) commute with elements of \(\mathbb{C}[G(r,n)] \), \(W_D^S(\lambda) \) is an \(\mathbb{C}[G(r,n)] \)-module isomorphic to \(V_S(\lambda) \).

\[\square \]

Acknowledgement. The final version work has been done while the first author was visiting IMSP at Benin, under the Staff Exchange program of the German Office of Academic Exchange (DAAD). He warmly thanks the DAAD for the financial support.

References

1 DÉPARTEMENT D’ÉCONOMIE ET DE MATHEMATIQUES APPLIQUEES, IUFIC, UNIVERSITÉ THOMAS SANKARA, BURKINA FASO.

Email address: nonkane.ibrahim@yahoo.fr, ibrahim.nonkane@uts.bf

2 AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES (AIMS), SUMMERHILL ESTATES, EAST LEGON HILLS, SANTOE, ACCRA, GHANA P.O. BOX LG DTD 20046, LEGON, ACCRA, GHANA.

Email address: latevi@aims.edu.gh