COMMON MULTIPLES OF PATHS AND STARS WITH COMPLETE GRAPHS

REJI THANKACHAN1 AND SARITHA CHANDRAN2*

Abstract. A graph G is a common multiple of two graphs H_1 and H_2 if there exists a decomposition of G into edge-disjoint copies of H_1 and also a decomposition of G into edge-disjoint copies of H_2. If G is a common multiple of H_1 and H_2 and G has q edges, then we call G a (q, H_1, H_2) graph. Our paper deals with the following question: ‘Given two graphs H_1 and H_2, for which values of q does there exist a (q, H_1, H_2) graph?’ when H_1 is either a path or a star with 3 or 4 edges and H_2 is a complete graph.

1. Introduction and preliminaries

All graphs considered here are finite and undirected, unless otherwise noted. The size of a graph G, denoted by $e(G)$, is its number of edges.

K_n denotes the complete graph on n vertices, and $K_{m,n}$ denotes the complete bipartite graph with vertex partitions of sizes m and n.

A k-path, denoted by P_k, is a path with k vertices (is a path of length $k - 1$); a k-star, denoted by S_k, is the complete bipartite graph $K_{1,k}$.

Let G and H be graphs. A decomposition of G is a set of edge-disjoint subgraphs of G whose union is G. An H-decomposition of G is a decomposition of G into copies of H. If G has an H-decomposition, we say that G is H-decomposable or H divides G and write $H | G$.

Given two graphs H_1 and H_2, one may ask for a graph G that is a common multiple of H_1 and H_2 in the sense that both H_1 and H_2 divide G. Several authors have investigated the problem of finding least common multiples of pairs of graphs; that is, graphs of minimum size which are both H_1- and H_2-decomposable. The problem was introduced by Chartrand et al in [6] and they showed that every two nonempty graphs have a least common multiple. It is clear that least common multiple of two graphs may not be unique. The size of a least common multiple of two graphs H_1 and H_2 is denoted by lcm(H_1,H_2). Also if q_1 and q_2 are two natural numbers, their number theoretic lcm is denoted by lcm(q_1,q_2) as usual. Clearly, the least common multiple of two graphs H_1 and H_2, $lcm(H_1,H_2) \geq lcm(e(H_1),e(H_2))$. The problem of finding the size of least common multiples of graphs has been studied for several pairs of graphs: cycles and stars[6, 15],

* Corresponding author.

2010 Mathematics Subject Classification. 05C38, 05C51, 05C70.

Key words and phrases. Graph Decomposition, Common Multiples of Graphs.
paths and complete graphs [12], pairs of cycles [10], pairs of cubes [2]. Pairs of
graphs having a unique least common multiple were investigated in [7] and least
common multiples of digraphs were considered in [8]. This is an interesting area
in decomposition of graphs like different types of domination[5, 13] in the field of
domination in graphs.

If G is a common multiple of H_1 and H_2, and G has q edges, then we call
G a (q, H_1, H_2) graph. An obvious necessary condition for the existence of a
(q, H_1, H_2) graph is that $e(H_1)|q$ and $e(H_2)|q$. This obvious necessary condition
is not always sufficient. Some necessary conditions are easy to see and others
are more difficult. For example there is no $(15, K_6, K_6)$ graph as there is no K_3-
decomposition of K_6. However, non-existence of a $(36, K_3, K_4)$ graph is somewhat
less obvious. Hence a natural question is: Given two graphs H_1 and H_2, for which
values of q, does there exist a (q, H_1, H_2) graph? Adams, Bryant, and Maenhaut
[1] gave a complete solution to this problem in the case where H_1 is the 4-cycle
and H_2 is a complete graph; Bryant and Maenhaut [3] gave a complete solution to
this problem in the case where H_1 is the complete graph K_3 and H_2 is a complete
graph. A complete solution to this problem in the case where H_1 is a path and
H_2 is a star, is investigated in [9].

Since $S_2 = P_3$, the obvious necessary and sufficient condition for the existence
of a (q, P_3, K_n) graph is that $2q \equiv 0 \pmod{n(n - 1)}$ when $\binom{n}{2}$ is even
and $q \equiv 0 \pmod{n(n - 1)}$ when $\binom{n}{2}$ is odd (a nontrivial connected graph G is
P_3-decomposable if and only if G has even size). So in this paper we establish
the necessary and sufficient condition for the existence of a (q, P_4, K_n) graph, a
(q, P_5, K_n) graph, a (q, S_3, K_n) graph and a (q, S_4, K_n) graph. The graph theo-
retic concepts described here are, of course, suggested by their number theoretic
counterparts.

The complete graph with vertex set $\{v_1, v_2, ..., v_m\}$ will be denoted by $[v_1, v_2, ..., v_m]$, m-path P_m with vertex set $\{v_1, v_2, ..., v_m\}$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{m-1}, v_m\}$ will be denoted by $\langle v_1, v_2, ..., v_m \rangle$ and m-star S_m with vertex set $\{v_0, v_1, v_2, ..., v_m\}$ and center at v_0 will be denoted by $[v_0; v_1, v_2, ..., v_m]$. If G and
H are graphs, and H is a subgraph of G, then the graph obtained by removing
the edges of H from G will be denoted by $G - H$. If G_1 and G_2 are graphs,
then the union of G_1 and G_2, denoted by $G_1 \cup G_2$, is the graph with vertex set
$V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. (We
shall only be considering the union of edge-disjoint graphs.)

2. Common Multiples of P_4 and K_n

In this section we determine, for all positive integers n, the set of integers q
for which there exists a common multiple of P_4 and K_n having precisely q edges.
The following known results on the path-decomposition of complete graphs are used for the discussion.

Theorem 2.1. [14] Let k and n be positive integers. There exists a P_{k+1}-
decomposition of K_n if and only if $n \geq k + 1$ and $n(n - 1) \equiv 0 \pmod{2k}$.

Theorem 2.2. [4] Let n and t be positive integers and let $m_1, m_2, ..., m_t$ be a
sequence of positive integers. There exist t pairwise edge-disjoint paths of lengths
$m_1, m_2, ..., m_t$ in K_n if and only if $m_i \leq n - 1$ for $i = 1, 2, ..., t$ and $m_1 + m_2 + \cdots + m_t \leq {n \choose 2}$.

Characterization for the existence of a (q, P_4, K_n) graph is given in the next theorem.

Theorem 2.3. There exists a graph with q edges that is both P_4-decomposable and K_n-decomposable if and only if

1. $2q \equiv 0 \mod n(n - 1)$ when $n \equiv 0, 1, 3, 4 \mod 6$
2. $2q \equiv 0 \mod 3n(n - 1)$ when $n \equiv 2, 5 \mod 6$
3. $q \neq 3$ when $n = 3$.

Proof. If there exists a (q, P_4, K_n) graph, then we require that 3 divides q and that $\binom{n}{2}$ divides q. Necessary conditions (1) and (2) follow immediately from this and will be referred to as the obvious necessary conditions. If $n = 3$, then $q \neq 3$ as K_3 is not P_4-decomposable.

Sufficient Conditions

If $n \equiv 0, 1, 3, 4 \mod 6$ and $n \geq 4$, then $P_4 | K_n$ (Theorem 2.1) and hence when $n \equiv 0, 1, 3, 4 \mod 6$, there exists a (q, P_4, K_n) graph G for all $q \equiv 0 \mod \binom{n}{2}$ by taking G to be $\frac{q}{\binom{n}{2}}$ vertex-disjoint copies of K_n. If $n = 3$, it is sufficient to construct a $(6, P_4, K_3)$ graph and a $(9, P_4, K_3)$ graph as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of these.

To construct a $(6, P_4, K_3)$ graph G, we let G be the union of the following two edge-disjoint copies of K_3.

\[\begin{array}{c}
[1, 2, 3] \\
[1, 4, 5]
\end{array} \]

A P_4-decomposition of G is given by the following two edge-disjoint copies of P_4.

\[\langle 2, 3, 1, 4 \rangle \quad \langle 4, 5, 1, 2 \rangle \]

To construct a $(9, P_4, K_3)$ graph G, we let G be the union of the following three edge-disjoint copies of K_3.

\[\begin{array}{c}
[1, 2, 3] \\
[1, 4, 5] \\
[1, 6, 7]
\end{array} \]

A P_4-decomposition of G is given by the following three edge-disjoint copies of P_4.

\[\langle 7, 6, 1, 5 \rangle \quad \langle 5, 4, 1, 3 \rangle \quad \langle 3, 2, 1, 7 \rangle \]

Thus sufficient conditions (1) and (3) obtained.

If $n \equiv 2, 5 \mod 6$, then $\binom{n}{2} \equiv 1 \mod 3$ and $lcm(3, \binom{n}{2}) = 3\binom{n}{2}$. First suppose that $n = 2$. For a $(3, P_4, K_2)$ graph G, we let G be P_4, which is K_2-decomposable.
Now suppose that \(n \equiv 2, 5 \pmod{6} \) and \(n \geq 5 \). Let \(\binom{n}{2} = 3r + 1 \), where \(r > 0 \). By Theorem 2.2, \(K_n \) can be decomposed into the paths \(P_4, P_4, \ldots, P_4, P_2 \).

Take three copies of \(K_n \). Consider the end vertices of \(P_2 \) in each copy of \(K_n \) in the decomposition. Identify these vertices to get a connected graph \(G \), which is actually three \(K_n \)'s joined by identification of end vertices of copies of \(P_2 \) serially. \(G \) is a \((3\binom{n}{2}, P_4, K_n) \) graph, since by the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is also \(P_4 \)-decomposable, since \(r \) copies of \(P_4 \) can be taken from each \(K_n \) and one copy of \(P_4 \) can be obtained by identification of the end vertices of three \(P_2 \)'s. Therefore there exists a \((k\binom{n}{2}, P_4, K_n) \) graph for all \(k \equiv 0 \pmod{3}, n \equiv 2, 5 \pmod{6} \).

\[\square \]

3. Common Multiples of \(P_5 \) and \(K_n \)

Following theorem gives a characterization for the existence of a \((q, P_5, K_n) \) graph.

Theorem 3.1. There exists a graph with \(q \) edges that is both \(P_5 \)-decomposable and \(K_n \)-decomposable if and only if

1. \(2q \equiv 0 \pmod{n(n-1)} \) when \(n \equiv 0, 1 \pmod{8} \)
2. \(q \equiv 0 \pmod{n(n-1)} \) when \(n \equiv 4, 5 \pmod{8} \)
3. \(q \equiv 0 \pmod{2n(n-1)} \) when \(n \equiv 2, 3, 6, 7 \pmod{8} \).

If there exists a \((q, P_5, K_n) \) graph, then we require that \(4 \) divides \(q \) and that \(\binom{n}{2} \) divides \(q \). Necessary conditions follow immediately from this and will be referred to as the obvious necessary conditions.

Sufficient Conditions

To show that the stated necessary conditions are sufficient we consider each in turn and construct the \((q, P_5, K_n) \) graphs required to prove Theorem 3.1. First note that if \(n \equiv 0, 1 \pmod{8} \), then \(P_5 | K_n \) (Theorem 2.1) and hence when \(n \equiv 0, 1 \pmod{8} \), there exists a \((q, P_5, K_n) \) graph \(G \) for all \(q \equiv 0 \pmod{\binom{n}{2}} \). (Take \(G \) be \(\frac{q}{\binom{n}{2}} \) vertex-disjoint copies of \(K_n \)). Thus sufficient condition (1) obtained. We require a few lemmas to construct the graphs for the remaining congruence classes of \(n \pmod{8} \).

Lemma 3.2. There exists a \((6k, P_5, K_4) \) graph for all even \(k \).

Proof. \(\text{lcm}(4, 6) = 12 \). So it is sufficient to construct a \((12, P_5, K_4) \) graph \(G \), as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of this.

To construct a \((12, P_5, K_4) \) graph \(G \), we let \(G \) be the union of the following two edge-disjoint copies of \(K_4 \).

\[[1, 2, 3, 4] \quad [1, 5, 6, 7] \]
A \(P_5 \)-decomposition of \(G \) is given by the following three edge-disjoint copies of \(P_5 \).

\[
\langle 2, 4, 3, 1, 6 \rangle \quad \langle 3, 2, 1, 5, 7 \rangle \quad \langle 4, 1, 7, 6, 5 \rangle
\]

\[\square\]

Lemma 3.3. For all \(k \equiv 0 \pmod{4} \), there exists a \((k(n), P_5, K_n) \) graph, when \(n = 2, 3 \).

Proof. If \(n = 2, 3 \), then \(\gcd(4, \binom{n}{2}) = 1 \) and hence \(\text{lcm}(4, \binom{n}{2}) = 4\binom{n}{2} \).

First suppose that \(n = 2 \). For a \((4, P_5, K_2) \) graph \(G \), we let \(G \) be \(P_5 \), which is \(K_2 \)-decomposable.

Now suppose that \(n = 3 \). To construct a \((12, P_5, K_3) \) graph \(G \), we let \(G \) be the union of the following four edge-disjoint copies of \(K_3 \).

\[
[1, 2, 3] \quad [3, 4, 5] \quad [5, 6, 7] \quad [7, 8, 9]
\]

A \(P_5 \)-decomposition of \(G \) is given by the following three edge-disjoint copies of \(P_5 \).

\[
\langle 1, 2, 3, 4, 5 \rangle \quad \langle 5, 6, 7, 8, 9 \rangle \quad \langle 9, 7, 5, 3, 1 \rangle
\]

Hence, if \(n = 2, 3 \), we can construct a \((k(n), P_5, K_n) \) graph \(G \), for all \(k \equiv 0 \pmod{4} \).

\[\square\]

Lemma 3.4. For all \(n \geq 5 \), there exists a \((q, P_4, K_n) \) graph if

1. \(q \equiv 0 \pmod{n(n-1)} \) and \(n \equiv 4, 5 \pmod{8} \); or
2. \(q \equiv 0 \pmod{2n(n-1)} \) when \(n \equiv 2, 3, 6, 7 \pmod{8} \).

Proof. If \(n \equiv 4, 5 \pmod{8} \), then \(\binom{n}{2} \equiv 2 \pmod{4} \) and \(\text{lcm}(4, \binom{n}{2}) = 2\binom{n}{2} \).

If \(n \equiv 2, 7 \pmod{8} \), then \(\binom{n}{2} \equiv 1 \pmod{4} \) and \(\text{lcm}(4, \binom{n}{2}) = 4\binom{n}{2} \).

If \(n \equiv 3, 6 \pmod{8} \), then \(\binom{n}{2} \equiv 3 \pmod{4} \) and \(\text{lcm}(4, \binom{n}{2}) = 4\binom{n}{2} \).

Consider the following cases.

Case 1: \(n \equiv 4, 5 \pmod{8}, n \geq 5 \)

Let \(\binom{n}{2} = 4r + 2 \), where \(r > 0 \).

Since \(n \geq 5 \), by Theorem 2.2, \(K_n \) can be decomposed into the edge-disjoint paths

\[
P_5, P_5, \ldots, P_5, P_3\underbrace{\text{r copies}}_{r-copies}
\]

Take two copies of \(K_n \) and identify the end vertices of two \(P_3 \) in each copy of \(K_n \) to get the required graph \(G = (2\binom{n}{2}, P_5, K_n) \). By the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is \(P_5 \)-decomposable, since \(G \) can be decomposed into \(2r + 1 \) edge-disjoint copies of \(P_5 \). The identified vertex joined two copies of \(P_3 \) to make a \(P_5 \). Then there exists a \((k(n), P_5, K_n) \) graph for all even \(k \).

Case 2: \(n \equiv 2, 7 \pmod{4} \)
Let \(\binom{n}{2} = 4r+1 \), where \(r > 0 \). By Theorem 2.2, \(K_n \) can be decomposed into the edge-disjoint paths
\[
P_5, P_5, ..., P_5, P_2
\]
Take four copies of \(K_n \). Consider the edges of \(P_2 \) in each copy of \(K_n \) in the above decomposition. Concatenate these four edges at the end vertices to make a path of length 4. This is a \((4 \binom{n}{2}, P_5, K_n)\) graph \(G \). By the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is \(P_5 \)-decomposable, since \(G \) can be decomposed into \(4r + 1 \) edge-disjoint copies of \(P_5 \). Among these copies of \(P_5 \) in \(G \), one copy of \(P_5 \) is obtained by the concatenation of four \(P_2 \)’s. Then there exists a \((k \binom{n}{2}, P_5, K_n)\) graph for all \(k \equiv 0 \) (mod 4).

Case 3: \(n \equiv 3, 6 \) (mod 4).
Let \(\binom{n}{2} = 4r+3 \), where \(r > 0 \). By Theorem 2.2, \(K_n \) can be decomposed into the edge-disjoint paths
\[
P_5, P_5, ..., P_5, P_4
\]
Take four copies of \(K_n \). Consider the end vertices of \(P_4 \) in each copy of \(K_n \) in the decomposition. Concatenate the four paths at these end vertices to make a path of length 12. This is the required graph \(G = (4 \binom{n}{2}, P_5, K_n) \). By the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is \(P_5 \)-decomposable, since \(G \) can be decomposed into \(4r + 3 \) edge-disjoint copies of \(P_5 \). Three copies of \(P_5 \) is obtained by decomposing the above path of length 12. Thus there exists a \((k \binom{n}{2}, P_5, K_n)\) graph for all \(k \equiv 0 \) (mod 4).

Lemmas 3.2, 3.3 and 3.4 allow us to construct all of the \((q, P_5, K_n)\) graphs that we require for the sufficient conditions (2) and (3) of Theorem 3.1. Thus proof of Theorem 3.1 is completed.

4. Common Multiples of \(S_3 \) and \(K_n \)

In this section we determine, for all positive integers \(n \), the set of integers \(q \) for which there exists a common multiple of \(S_3 \) (3-star) and complete graph \(K_n \) having precisely \(q \) edges. The following known results on the star-decomposition of complete graphs are used for the discussion.

Theorem 4.1. [16] A complete graph, \(K_n \) can be decomposed into \(\frac{\binom{n}{2}}{k} \) edge-disjoint stars, \(S_k \) if and only if \(\binom{n}{2} \equiv 0 \) (mod \(k \)) and \(n \geq 2k \).

Theorem 4.2. [11] Let \(m_1, m_2, ..., m_l \) be non-negative integers such that \(\sum_{i=1}^{l} m_i = \binom{n}{2} \) and \(2m_i \leq n \) for \(1 \leq i \leq l \). Then \(K_n \) can be decomposed into \(S_{m_1}, S_{m_2}, ..., S_{m_l} \).

Theorem 4.3. [6] For every integer \(l \geq 1 \), \(\text{lcm}(C_3, K_{1,l}) = \frac{3kl}{d} \), where \(d = \gcd(3, l) \) and \(k = \left\lceil \frac{(d^2+3)}{9} \right\rceil \).

The following theorem gives the necessary and sufficient condition for the existence of a \((q, S_3, K_n)\) graph.
Theorem 4.4. There exists a graph with \(q \) edges that is both \(S_3 \)-decomposable and \(K_n \)-decomposable if and only if

1. \(2q \equiv 0 \pmod{n(n-1)} \) when \(n \equiv 0, 1, 3, 4 \pmod{6} \)
2. \(2q \equiv 0 \pmod{3n(n-1)} \) when \(n \equiv 2, 5 \pmod{6} \)
3. \(2q \geq 3n(n-1) \) when \(n = 3, 4 \).

Proof. The given conditions are necessary for the following reasons.

If there exists a \((q, S_3, K_n)\) graph, then we require that 3 divides \(q \) and that \(\binom{n}{2} \) divides \(q \). Conditions (1) & (2) follow immediately from this and will be referred to as the obvious necessary conditions.

If \(n = 3 \) and there exists a \((q, S_3, K_3)\) graph, then \(q \neq 3, 6 \) since \(\text{lcm}(S_3, K_3) = 9 \) by Theorem 4.3.

If \(n = 4 \) and there exists a \((q, S_3, K_4)\) graph, then \(q \neq 6 \), since \(K_4 \) is not \(S_3 \)-decomposable, and \(q \neq 12 \), since two copies of \(K_4 \) intersecting in at most one vertex is not \(S_3 \)-decomposable. Hence \(q \geq 3\binom{n}{2} \) when \(n = 3, 4 \).

Sufficient Conditions

To show that the stated necessary conditions are sufficient we consider each in turn and construct the \((q, S_3, K_n)\) graphs required to prove Theorem 4.4.

Case 1: \(n = 2, 3, 4, 5 \)

When \(n = 2, K_2 | S_3 \) and hence there exists a \((q, S_3, K_2)\) graph \(G \) for all \(q \equiv 0 \pmod{3} \) (Take \(G \) to be \(q \) vertex disjoint copies of \(S_3 \)).

When \(n = 3 \), it is sufficient to construct a \((9, S_3, K_3)\) graph, a \((12, S_3, K_3)\) graph and a \((15, S_3, K_3)\) graph as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of these.

For a \((9, S_3, K_3)\) graph \(G \), we let \(G \) be the union of the following three edge-disjoint copies of \(K_3 \).

\[
[1, 2, 3] \quad [2, 4, 5] \quad [3, 5, 6]
\]

An \(S_3 \)-decomposition of \(G \) is given by the following three edge-disjoint copies of \(S_3 \).

\[
[2; 1, 3, 4] \quad [3; 1, 5, 6] \quad [5; 2, 4, 6]
\]

For a \((12, S_3, K_3)\) graph \(G \), we let \(G \) be \(K_2, 2, 2, 2 \), the graph of the octahedron. It is easy to see that \(K_2, 2, 2, 2 \) is \(S_3 \)-decomposable and \(K_3 \)-decomposable.

To construct a \((15, S_3, K_3)\) graph \(G \), we let \(G \) be the union of the following five edge-disjoint copies of \(K_3 \).

\[
[1, 2, A] \quad [1, 3, B] \quad [2, 4, B] \quad [3, 5, A] \quad [4, 5, C]
\]

An \(S_3 \)-decomposition of \(G \) is given by the following five edge-disjoint copies of \(S_3 \).

\[
[1; 2, A, B] \quad [2; 4, A, B] \quad [3; 1, A, B] \quad [4; 5, C, B] \quad [5; 3, A, C]
\]

Hence there exists a \((3k, S_3, K_3)\) graph \(G \) for all \(k \geq 3 \).

When \(n = 4 \), \(\text{lcm}(3, \binom{n}{2}) = 6 \). It is sufficient to construct a \((18, S_3, K_4)\) graph,
a \((24, S_3, K_4)\) graph and a \((30, S_3, K_4)\) graph as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of these. To construct a \((18, S_3, K_4)\) graph \(G\), we let \(G\) be the union of the following three edge-disjoint copies of \(K_4\).

\[
\begin{align*}
[1, 2, 3, A] & \quad [1, 4, 5, B] & [2, 4, 6, C] \\
[1; 2, A, B] & \quad [2; 4, C, A] & [3; 2, 1, A] \\
[4; 1, C, B] & \quad [5; 4, 1, B] & [6; 4, 2, C]
\end{align*}
\]

An \(S_3\)-decomposition of \(G\) is given by the following six edge-disjoint copies of \(S_3\).

\[
\begin{align*}
[1; 2, A, B] & \quad [2; 4, C, A] & [3; 2, 1, A] \\
[4; 1, C, B] & \quad [5; 4, 1, B] & [6; 4, 2, C]
\end{align*}
\]

To construct a \((24, S_3, K_4)\) graph \(G\), we let \(G\) be the union of the following four edge-disjoint copies of \(K_4\).

\[
\begin{align*}
[0, 2, 3, A] & \quad [2, 4, 5, B] & [4, 6, 7, A] & [1, 3, 7, B] \\
[0; 2, 4, A] & \quad [1; 3, 5, A] & [2; 4, A, B] & [3; 2, A, B] \\
\end{align*}
\]

To construct a \((30, S_3, K_4)\) graph \(G\), we let \(G\) be the union of the following five edge-disjoint copies of \(K_4\).

\[
\begin{align*}
[0, 2, 4, A] & \quad [1, 3, 5, A] & [4, 6, 8, B] & [5, 7, 9, B] & [2, 3, 6, 7] \\
[0; 2, 4, A] & \quad [1; 3, 5, A] & [2; 4, 7, A] & [3; 6, 2, A] \\
[8; 6, 4, B] & \quad [9; 7, 5, B]
\end{align*}
\]

An \(S_3\)-decomposition of \(G\) is given by the following ten copies of \(S_3\).

\[
\begin{align*}
[0; 2, 4, A] & \quad [1; 3, 5, A] & [2; 4, 7, A] & [3; 6, 2, A] \\
[8; 6, 4, B] & \quad [9; 7, 5, B]
\end{align*}
\]

Therefore there exists a \((6k, S_3, K_4)\) graph \(G\) for all \(k \geq 3\).

When \(n = 5\), \(lcm(3, \binom{n}{2}) = 30\). It is easy to see that \(K_5\) can be decomposed into three edge-disjoint copies of \(S_3\) and an \(S_1\). Take three copies of \(K_5\) and identify them at one vertex of \(S_1\) in the decomposition of each \(K_5\), to get the required graph \(G = (30, S_3, K_5)\) graph. Then \(G\) is \(K_5\)-decomposable, by its construction and \(G\) can be decomposed into 10 edge-disjoint copies of \(S_3\) (one \(S_3\) centered at
the identified vertex and 9 from three copies of K_5). Therefore there exists a $(10k, S_3, K_5)$ graph G for all $k \equiv 0 \pmod{3}$.

Case 2: $n \geq 6$ and $n \equiv 0, 1, 3, 4 \pmod{6}$.

Then S_3/K_n, by Theorem 4.1. Hence in this case there exists a (q, S_3, K_n) graph G for all $q \equiv 0 \pmod{\binom{n}{2}}$ (Take G to be $q/3$ vertex-disjoint copies of K_n).

Case 3: $n \geq 6$ and $n \equiv 2, 5 \pmod{6}$.

In this case $\binom{n}{2} \equiv 1 \pmod{3}$ and $lcm(3, \binom{n}{2}) = 3\binom{n}{2}$. Let $\binom{n}{2} = 3r + 1$, where $r > 0$. By Theorem 4.2, K_n can be decomposed into the edge-disjoint stars $S_3, S_3, \ldots, S_3, S_1$. Take 3 copies of K_n. Consider the centers of S_1 in each copy of K_n in the decomposition of K_n. Identify these three vertices from 3 copies of K_n to get the required graph $G = (3\binom{n}{2}, S_3, K_n)$. By construction itself G is K_n-decomposable. Also, G can be decomposed into $3r + 1$ copies of S_3 (r copies of S_3 from each K_n and one copy of S_3 obtained at the identified vertex). Therefore there exists a $(k\binom{n}{2}, S_3, K_n)$ for all $k \equiv 0 \pmod{3}$.

5. **Common Multiples of S_4 and K_n**

In this section we determine, for all positive integers n, the set of integers q for which there exists a common multiple of $S_4(4 - \text{star})$ and K_n having precisely q edges. The following theorem gives necessary and sufficient condition for the existence of a (q, S_4, K_n) graph.

Theorem 5.1. There exists a graph with q edges that is both S_4-decomposable and K_n-decomposable if and only if

1. $2q \equiv 0 \pmod{n(n-1)}$ when $n \equiv 0, 1 \pmod{8}$
2. $q \equiv 0 \pmod{n(n-1)}$ when $n \equiv 4, 5 \pmod{8}$
3. $q \equiv 0 \pmod{2n(n-1)}$ when $n \equiv 2, 3, 6, 7 \pmod{8}$
4. $q \neq 12$ when $n = 3$
5. $q > n(n-1)$ when $n = 4, 5$.

Proof. If there exists a (q, S_4, K_n) graph, then we require that 4 divides q and that $\binom{n}{2}$ divides q. Conditions (1) - (3) follow immediately from this and will be referred to as the obvious necessary conditions. The following two lemmas establish the remaining necessary conditions (4) and (5).

Lemma 5.2. If there exists a (q, S_4, K_3) graph, then $q \neq 12$.

Proof. If $n = 3$, then the obvious necessary condition for the existence of a (q, S_4, K_n) graph is that $q \equiv 0 \pmod{4\binom{n}{2}}$. Suppose that $n = 3$, and there exists a $(12, S_4, K_3)$ graph. This is impossible since $lcm(S_4, K_3) = 24$ by Theorem 4.3. So $q \neq 12$. □

Lemma 5.3. If $n = 4, 5$ and there exists a (q, S_4, K_n) graph, then $q > 2\binom{n}{2}$.
Proof. If \(n = 4, 5 \), then the obvious necessary condition for the existence of a \((q, S_4, K_n)\) graph is that \(q \equiv 0 \pmod{2^{\binom{n}{2}}} \). First suppose that \(n = 4 \), and there exists a \((12, S_4, K_4)\) graph \(G \). Such a graph consists of two copies of \(K_4 \) intersecting in at most one vertex (in order for \(G \) to be \(K_n \)-decomposable), then there is only one vertex with degree greater than 4. So, if we remove a copy of \(S_4 \) from \(G \), we can not obtain two more edge-disjoint copies of \(S_4 \)'s from \(G \).

Now suppose that \(n = 5 \), and there exists a \((20, S_4, K_5)\) graph \(G \). Then \(G \) consists of two copies of \(K_5 \) intersecting in at most one vertex, and hence \(G \) has eight vertices of degree 4 and one vertex of degree 8. If we remove copies of \(S_4 \)'s one by one from \(G \) we could obtain only three \(S_4 \)'s. But \(G \) must contain five \(S_4 \)'s. Thus \(q > 2^{\binom{n}{2}} \) when \(n = 4, 5 \).

\(\square\)

Sufficient Conditions
To show that the stated necessary conditions are sufficient we consider each in turn and construct the \((q, S_4, K_n)\) graphs required to prove Theorem 5.1. First note that if \(n \equiv 0, 1 \pmod{8} \), then \(S_4 | K_n \) (Theorem 4.1) and hence when \(n \equiv 0, 1 \pmod{8} \), there exists a \((q, S_4, K_n)\) graph \(G \) for all \(q \equiv 0 \pmod{2^{\binom{n}{2}}} \)(Take \(G \) to be \(q \left(\binom{n}{2}\right) \) vertex-disjoint copies of \(K_n \)). Thus sufficient condition (1) obtained. We require a few lemmas to construct the graphs for the remaining congruence classes of \(n \pmod{8} \).

Lemma 5.4. For all \(k > 1 \), there exists a \((12k, S_4, K_4)\) graph.

Proof. It is sufficient to construct a \((24, S_4, K_4)\) graph and a \((36, S_4, K_4)\) graph as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of these.

To construct a \((24, S_4, K_4)\) graph \(G \), we let \(G \) be the union of the following four edge-disjoint copies of \(K_4 \).

\[
[1, 2, 3, A] \quad [1, 4, 5, B] \quad [2, 4, 6, C] \quad [3, 5, 6, D]
\]

An \(S_4 \)-decomposition of \(G \) is given by the following six edge-disjoint copies of \(S_4 \).

\[
[1; 2, 4, A, B] \quad [2; 3, 6, A, C] \quad [3; 1, 5, A, D] \quad [4; 2, 5, B, C] \\
[5; 1, 6, B, D] \quad [6; 3, 4, C, D]
\]

To construct a \((36, S_4, K_4)\) graph, we let \(G \) be the union of the following six edge-disjoint copies of \(K_4 \).

\[
[1, 2, 3, A] \quad [4, 5, 6, A] \quad [7, 8, 9, A] \quad [1, 4, 7, B] \\
[2, 5, 8, B] \quad [3, 6, 9, B]
\]
An S_4-decomposition of G is given by the following nine edge-disjoint copies of S_4.

$[1; 2, 4, A, B] \quad [2; 3, 5, A, B] \quad [3; 1, 6, A, B] \quad [4; 5, 7, A, B]$

$[5; 6, 8, A, B] \quad [6; 4, 9, A, B] \quad [7; 1, 8, A, B] \quad [8; 2, 9, A, B]$

$[9; 3, 7, A, B]$

\[\Box\]

Lemma 5.5. For all $k > 1$, there exists a $(20k, S_4, K_5)$ graph.

Proof. It is sufficient to construct a $(40, S_4, K_5)$ graph and a $(60, S_4, K_5)$ graph as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of these.

To construct a $(40, S_4, K_5)$ graph G, we let G be the union of the following four edge-disjoint copies of K_5.

$[0, 1, 2, 3, A] \quad [0, 4, 5, 6, B] \quad [1, 4, 7, 8, C] \quad [2, 5, 7, 9, D]$

An S_4-decomposition of G is given by the following ten edge-disjoint copies of S_4.

$[0; 1, 2, B, A] \quad [1; 2, 4, C, A] \quad [2; 3, 5, D, A] \quad [3; 0, 1, 2, A]$

$[4; 0, 7, C, B] \quad [5; 0, 4, D, B] \quad [6; 4, 5, 0, B] \quad [7; 1, 2, D, C]$

$[8; 1, 7, 4, C] \quad [9; 2, 5, 7, D]$

To construct a $(60, S_4, K_5)$ graph G, we let G be the union of the following six edge-disjoint copies of K_5.

$[1, 2, 3, 4, 5] \quad [1, 6, 7, 8, 9] \quad [2, 6, 10, 11, 12] \quad [3, 7, 10, 13, 14]$

$[4, 8, 11, 13, 15] \quad [5, 9, 12, 14, 15]$

An S_4-decomposition of G is given by the following fifteen edge-disjoint copies of S_4.

$[1; 2, 3, 4, 5] \quad [2; 3, 4, 5, 6] \quad [3; 4, 5, 7, 10] \quad [4; 5, 8, 11, 13]$

$[5; 9, 12, 14, 15] \quad [6; 1, 10, 11, 12] \quad [7; 1, 10, 13, 14] \quad [8; 1, 6, 7, 9]$

$[9; 1, 6, 7, 12] \quad [10; 2, 11, 12, 13] \quad [11; 2, 8, 12, 13] \quad [12; 2, 9, 14, 15]$

$[13; 3, 8, 14, 15] \quad [14; 3, 9, 10, 15] \quad [15; 4, 8, 9, 11]$

\[\Box\]
Lemma 5.6. There exists a \((q, S_4, K_n)\) graph if

1. \(q \equiv 0 \pmod{n(n-1)}\), \(q > n(n-1)\) and \(n = 4, 5\); or
2. \(q \equiv 0 \pmod{2n(n-1)}\) and \(n = 2, 6, 7\); or
3. \(q \equiv 0 \pmod{2n(n-1)}\), \(q \neq 12\) and \(n = 3\).

Proof. The result is true for \(n = 4\) and 5 by Lemmas 5.4 and 5.5 respectively.

If \(n = 2, 3, 6, 7\), then \(\gcd(4, n^2) = 1\) and hence \(\text{lcm}(4, n^2) = 4n^2\).

Case 1: \(n = 2\)

For every \(k \equiv 0 \pmod{4}\) let \(G_k\) be \(k/4\) vertex-disjoint copies of \(S_4\), which is both \(S_4\)-decomposable and \(K_2\)-decomposable. Hence a \((k, S_4, K_2)\) graph exists for all \(k \equiv 0 \pmod{4}\).

Case 2: \(n = 3\)

By Lemma 5.2, \(q \neq 12\). It is sufficient to construct a \((24, S_4, K_3)\) graph and a \((36, S_4, K_3)\) graph as all the required graphs can be constructed as the vertex-disjoint union of the appropriate number of copies of these.

A \((24, S_4, K_3)\) graph \(G\) is obtained from \(K_2, 4\) by adding a new vertex for each of its eight edges and joining the vertex to the two vertices incident with the corresponding edge. For a \((36, S_4, K_3)\) graph \(G\), we take \(G = K_9\), which is \(S_4\)-decomposable (by Theorem 4.1) and \(K_3\)-decomposable (\(K_3|K_n\) if and only if \(n \equiv 1, 3 \pmod{6}\)).

Case 3: \(n = 6\)

Then \(\text{lcm}(4, n^2) = 60\).

To construct a \((60, S_4, K_6)\) graph \(G\), we let \(G\) be the union of the following four edge-disjoint copies of \(K_6\).

\[
\begin{align*}
&[1, 2, 3, 4, 5, 0] & [1, 6, 7, 8, 9, A] \\
&[1, 10, 11, 12, 13, B] & [5, 7, 13, 14, 15, C] \\
\end{align*}
\]

An \(S_4\)-decomposition of \(G\) is given by the following fifteen edge-disjoint copies of \(S_4\).

\[
\begin{align*}
&[1; 0, 5, A, B] & [2; 0, 5, 3, 1] & [3; 0, 5, 4, 1] & [4; 0, 5, 2, 1] \\
&[5; 0, 7, 15, C] & [6; 7, 8, 1, A] & [7; 1, 13, A, C] & [8; 9, 1, 7, A] \\
&[9; 7, 6, 1, A] & [10; 11, 13, 1, B] & [11; 12, 13, 1, B] & [12; 13, 10, 1, B] \\
&[13; 1, 5, B, C] & [14; 5, 7, 13, C] & [15; 7, 13, 14, C] \\
\end{align*}
\]

Hence there exists a \((15k, S_4, K_6)\) graph exists for all \(k \equiv 0 \pmod{4}\).

Case 4: \(n = 7\)

In this case \(\text{lcm}(4, n^2) = 84\). We can easily verify that \(K_7\) can be decomposed into five edge-disjoint copies of \(S_4\) and one copy of \(S_1\). To construct a \((84, S_4, K_7)\) graph \(G\), take four copies of \(K_7\) and identify them at the one vertex of \(S_1\) in the
decomposition of \(K_7 \). By the construction itself \(G \) is \(K_7 \)-decomposable. \(G \) can be decomposed into 21 edge-disjoint copies of \(S_4 \) (five copies of \(S_4 \) from each \(K_7 \) and one copy of \(S_4 \) at the identified vertex). Therefore there exists a \((21k, S_4, K_7)\) graph for all \(k \equiv 0 \pmod{4} \).

\[\square \]

Lemma 5.7. For all \(n \geq 8 \), there exists a \((q, S_4, K_n)\) graph if

1. \(q \equiv 0 \pmod{n(n-1)} \) and \(n \equiv 4, 5 \pmod{8} \); or
2. \(q \equiv 0 \pmod{2n(n-1)} \) when \(n \equiv 2, 3, 6, 7 \pmod{8} \);

Proof. If \(n \equiv 4, 5 \pmod{8} \), then \(\binom{n}{2} \equiv 2 \pmod{4} \) and \(\operatorname{lcm}(4, \binom{n}{2}) = 2 \binom{n}{2} \).

If \(n \equiv 2, 7 \pmod{8} \), then \(\binom{n}{2} \equiv 1 \pmod{4} \) and \(\operatorname{lcm}(4, \binom{n}{2}) = 4 \binom{n}{2} \).

If \(n \equiv 3, 6 \pmod{8} \), then \(\binom{n}{2} \equiv 3 \pmod{4} \) and \(\operatorname{lcm}(4, \binom{n}{2}) = 4 \binom{n}{2} \).

Consider the following cases.

Case 1: \(n \equiv 4, 5 \pmod{8}, n \geq 8 \).

Let \(\binom{n}{2} = 4r + 2 \), where \(r > 0 \).

Since \(n \geq 8 \), by Theorem 4.2, \(K_n \) can be decomposed into the edge-disjoint stars

\[
\underbrace{S_4, S_4, \ldots, S_4}_{r\text{-copies}}, S_2.
\]

Take two copies of \(K_n \) and identify the centers of two \(S_2 \) in each copy of \(K_n \) to get the required graph \(G = \left(2\binom{n}{2}, S_4, K_n\right)\). By the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is \(S_4 \)-decomposable, since \(G \) can be decomposed into \(2r + 1 \) edge-disjoint copies of \(S_4 \). The identified vertex can be considered as the center of one copy of \(S_4 \). Then there exists a \((k\binom{n}{2}, S_4, K_n)\) graph for all even \(k \).

Case 2: \(n \equiv 2, 7 \pmod{4} \).

Let \(\binom{n}{2} = 4r + 1 \), where \(r > 0 \). By Theorem 4.2, \(K_n \) can be decomposed into the edge-disjoint stars

\[
\underbrace{S_4, S_4, \ldots, S_4}_{r\text{-copies}}, S_1
\]

Take four copies of \(K_n \). Consider the centers of \(S_1 \) in each copy of \(K_n \) in the decomposition. Identify these four vertices from each copy of \(K_n \) to get the required graph \(G = \left(4\binom{n}{2}, S_4, K_n\right)\). By the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is \(S_4 \)-decomposable, since \(G \) can be decomposed into \(4r + 1 \) edge-disjoint copies of \(S_4 \). The identified vertex can be considered as the center of one copy of \(S_4 \). Then there exists a \((k\binom{n}{2}, S_4, K_n)\) graph for all \(k \equiv 0 \pmod{4} \).

Case 3: \(n \equiv 3, 6 \pmod{4} \).

Let \(\binom{n}{2} = 4r + 3 \), where \(r > 0 \). By Theorem 4.2, \(K_n \) can be decomposed into the edge-disjoint stars

\[
\underbrace{S_4, S_4, \ldots, S_4}_{r\text{-copies}}, S_3
\]

Take four copies of \(K_n \). Consider the centers of \(S_3 \) in each copy of \(K_n \) in the decomposition. Identify these four vertices from each copy of \(K_n \) to get the required graph \(G = \left(4\binom{n}{2}, S_4, K_n\right)\). By the construction itself \(G \) is \(K_n \)-decomposable. \(G \) is \(S_4 \)-decomposable, since \(G \) can be decomposed into \(4r + 3 \) edge-disjoint copies
of S_4. The identified vertex can be considered as the center of three copies of S_4. Then there exists a \((k, S_4, K_n)\) for all \(k \equiv 0 \pmod{4}\).

Lemmas 5.6 and 5.7 allow us to construct all of the \((q, S_4, K_n)\) graphs that we require for the sufficient conditions (2), (3), (4) and (5) of Theorem 5.1.

Acknowledgement. The authors wish to thank Prof. Darryn E. Bryant, The University of Queensland, Australia for his helpful suggestions.

References

1 Department of Mathematics, Government College, Chittur, Palakkad, Kerala, India-678104.
Email address: rejiaran@gmail.com

2 Department of Mathematics, Government Polytechnic College, Palakkad, Kerala, India-678551
Email address: sarithachandran.gvc@gmail.com