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EXACT SOLUTIONS OF NON-NEWTONIAN FLUID OF
ROTATING MHD FLOWS THROUGH POROUS MEDIA WITH

HALL EFFECT BY COMPLEX VARIABLE TECHNIQUE

MANOJ KUMAR1, SAYANTAN SIL2 AND MANTU PRAJAPATI3∗

Abstract. In this paper steady, two dimensional, incompressible, electrically
conducting, MHD fluid through porous media in a rotating reference frame with
Hall effect under the presence of magnetic field is considered. The magnetic
field is applied along the z-axis. Using complex variable technique the governing
equations are recast in solvable form. Exact solutions are obtained for straight
parallel flows.

1. Introduction

In this paper we have applied complex variable technique for the study of
steady two dimensional incompressible, electrically conducting MHD fluid flows
through porous media in a rotating frame of reference with Hall effect under the
influence of magnetic field. We have found exact solutions for straight parallel
flow in this work. The governing equations of the flow of a conducting fluid in
the presence of a magnetic field are second and fourth order non-linear partial
differential equations which are very difficult to solve for exact solutions. To
convert these equations into solvable form various transformation techniques like
hodograph/Magnetograph transformation, inverse, semi-inverse methods, appli-
cations of Martin’s approach based on differential geometry etc, are applied. Also,
another method involving complex variable is used for the analysis of the fluid
flow problems and converting the flow equations into a suitable form for find-
ing out the exact solutions. This complex variable technique has been used by
some researchers for finding the exact solution. The first use of this method
was done by Stallybrass [22], followed by Wan-Lee Yin [26], in 1983. Afterwards
Nguyen and Chandna [13], Thakur and Kumar [23], Sil and Kumar [15], have
applied this technique for studying different kinds of MHD fluid flows problems.
The study of rotating fluid have gained a lot of importance over the years due
to their various applications in different fields including oceanography, meteo-
rology, atmospheric science and limnology etc. The study of earth’s magnetic
field done by Hide and Proberts [9], involved a frame rotating with earth. The
theory of rotating fluid was also considered by Dieke [7], in the study of solar
physics involved in the sunspot development, the solar cycle and the structure of
rotating magnetic stars. Various studies on rotating MHD/ non-MHD fluid or
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fluid in a rotating frame of reference have been carried out by many researchers
[8, 25, 21, 12, 4, 18, 19, 20, 10, 17, 24, 14, 16, 5]. Many works are there in the litera-
ture where in MHD fluid analysis has been carried out with Hall effect. Exact
solutions involving Haff effect MHD fluid flow have been found out by many au-
thors [2, 6, 1, 27, 11]. Awanti, Jyoti and Katagi [3], also find the solution of MHD
flow of viscous fluid.
In this paper an approach has been made where the complex variables are em-
ployed as new independent variables for the determination of the exact solutions
for straight parallel flow problem of two dimensional motion of a steady MHD
flows of an incompressible electrically conducting fluid through porous media hav-
ing infinite electrical conductivity in a rotating reference frame with Hall effect
in a magnetic field.

Nomenclature

Symbol SI unit Meaning

B Wbm−1 magnetic induction vector
H0 Am−1 uniform applied magnetic field vector
E V m−1 electric field vector
e C electric charge
J Am−2 current density
k m2 permeability of the medium
ne m−3 number density of electron
p Nm−2 pressure
p′ Nm−2 reduced pressure
pe Nm−2 electron pressure
r m radius vector
u, v ms−1 components of velocity in cartesian coordinate
V ms−1 velocity vector
x,y m cartesian coordinates
µ Hm−1 magnetic permeability
η Kgm−1s−1 coefficient of viscosity
ρ Kgm−3 density
σ Sm−1 electrical conductivity
τ s electron collision time
ωe s−1 electron frequency
φ ... Hall parameter
Ω rad s−1 angular velocity vector

2. Basic Equations

The basic equations governing the motion of a steady, homogeneous, infinite
electrically conducting fluid flows through porous media in a rotating reference
frame with Hall effect under the influence of magnetic field is given by

~∇ · ~V = 0, (2.1)

ρ[(~V · ~∇)~V + 2~Ω× ~V + ~Ω× (~Ω× ~r)] = −~∇p+ η∇2~V + ~J × ~B − η

k
~V , (2.2)
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~J +
weτe
H0

( ~J × ~B) = σ[ ~E + ~v × ~B +
1

ene
∇pe]. (2.3)

Where ~B = magnetic induction vector, ~E= electric field, ~J=current density, ωe=
cyclotron frequency, H0=strength of uniform applied magnetic field, σ=electrical
conductivity, e=electron charge, ne= number density of the electron, pe=electron
pressure ~V = velocity vector, p = fluid pressure , ρ = fluid density, ~Ω = constant
angular velocity vector, ~r = the radius vector, η = coefficient of viscosity, µ =
magnetic permeability, k= permeability of the porous medium and τe= electron
collision time.
We consider two dimensional flow ~V=~V (x, y) and ~B = µH0

~K , and all variable are
function of x and y. Also we introduce vorticity function and Bernoulli function

ω =
∂v

∂x
− ∂u

∂y
, ( Vorticity function) (2.4)

h =
1

2
ρV 2 + p′ +

1

2
ρ|~Ω× ~r|2, (Bernoulli function) (2.5)

where V 2 = u2 + v2, p′ is the reduced pressure given by p′ = p− 1
2
ρ|~Ω×~r|2. Now

above system of equations are replaced by the following system of equations

∂u

∂x
+
∂v

∂y
= 0, (2.6)

η
∂ω

∂y
− ρvω + Av + Fu = −∂h

∂x
, (2.7)

η
∂ω

∂x
− ρuω + Au− Fv =

∂h

∂y
, (2.8)

where

A = 2ρΩ− σµ3H2
0φ

1 + µ2φ2
and F =

η

k
+

σµ2H2
0

1 + µ2φ2

are constants, where φ = ωeτ is the Hall parameter.
We can write equation (2.7) and (2.8) in vector form

~∇h = η∇2~V + (ρω − A)~V × ~k − F ~V , (2.9)

where ~k is the unit vector along z-direction.

Taking curl of equation (2.9) and using integrability conditions ∂2h
∂x∂y

= ∂2h
∂y∂x

we

have
~∇× ~∇h = η∇2(~∇× ~V ) + (ρω − A)(~∇× ~V × ~k)− F (~∇× ~V ), (2.10)

η∇2ω = Fω, (2.11)

here ~ω = ~∇× ~V , using u = ψy, v = −ψx and ω = −∇2ψ~k,
equation (2.11) becomes

η∇4ψ = −F∇2ψ. (2.12)
We introduce the complex variables

z = x+ iy, z̄ = x− iy,
where i =

√
−1 and the following relation can be derived

mx = mz +mz̄, my = i(mz −mz̄),
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4mzmz̄ = m2
x +m2

y, 4mzz̄ = mxx +myy,

∂(m,n)

∂(x, y)
= −4Im(mz̄mz),

mxnx +myny = 4Re(mznz̄), (2.13)

where m and n are scalar functions.

If f(z) = α(x, y) + iβ(x, y) is a complex analytic function, then

f
′
(z) = αx + iβx = αx − iαy = 2αz = 2iβz,

(2.14)

and

f ′(z) = 2αz̄ = 2iβz̄, (2.15)

where prime denotes differentiation with respect to z.
using equation (2.13) in (2.12) we get,

ψzz̄zz̄
ψzz̄

= −D, (2.16)

where D = F
η

3. Straight Parallel Flow
Let

ψ = ψ(α), ψ
′ 6= 0, (3.1)

to be the stream function, where

α(z, z̄) = C1(z + z̄) + iC2(z̄ − z), (3.2)

where C1 and C2 are arbitrary constants.
from (3.1) and (3.2) we get

ψz = C̄ψ
′
, ψz̄ = Cψ

′
, ψzz̄ = CC̄ψ

′′
, and ψzz̄zz̄ = C2C̄2ψIV , (3.3)

where C = (C1 + iC2) and prime denotes differntiation with respect to α.
Using equation (3.3) in (2.16) we get

ψIV

ψ′′ = −R, (3.4)

where R = D
CC̄

. Solving equation (3.4) we get

ψ = − 1

R

[
A1sin

√
Rα−Bcos

√
Rα

]
, (3.5)

where A1 and B are constant. Putting value of R in equation (3.5) we get

ψ = − 1
D
CC̄

[
A1sin

√
D

CC̄
α−Bcos

√
D

CC̄
α
]
, (3.6)

in terms of x and y

ψ = − 1
D
CC̄

[
A1sin

√
D

CC̄
(2(C1x+ C2y)) +Bcos

√
D

CC̄
(2(C1x+ C2y))

]
, (3.7)
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fig: 1 streamlines

fig: 2 streamsurface

u =
2C2√

D
CC̄

[
Bsin

√
D

CC̄
(2(C1x+ C2y))− A1cos

√
D

CC̄
(2(C1x+ C2y))

]
, (3.8)

v =
2C1√

D
CC̄

[
A1cos

√
D

CC̄
(2(C1x+ C2y))−Bsin

√
D

CC̄
(2(C1x+ C2y))

]
, (3.9)

ω = −4(C2
1 + C2

2)
[
A1sin

√
D

CC̄
(2(C1x+ C2y)) +Bcos

√
D

CC̄
(2(C1x+ C2y))

]
,

(3.10)
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p = 4η(C2
1 + C2

2)
[C2

C1

− C1

C2

][
A1sin

√
D

CC̄
(2(C1x+ C2y))

+Bcos

√
D

CC̄
(2(C1x+ C2y))

]
− 8ρ(C1 + C2)2(A2

1 −B2)sin2

√
D

CC̄
(2(C1x+ C2))

−4ρ(C2
1 + C2

2)2√
D
CC̄

A1Bsin2

√
D

CC̄
(2(C1x+ C2y))

− A

2
√

D
CC̄

[ 1

C1

+
1

C2

][
A1sin

√
(2(C1x+ Cy)) +Bcos

√
D

CC̄
(2(C1x+ C2y))

]

+
F
D
CC̄

[C1

C2

− C2

C1

][
A1sin

√
D

CC̄
(2(C1x+ C2y)) +Bcos

√
D

CC̄
(2(C1x+ C2y))

]
− 2ρ

D
CC̄

[
C2

2{Bsin
√

D

CC̄
(2(C1x+ C2y))− A1cos

√
D

CC̄
(2(C1x+ C2y))}2

+C2
1{A1cos

√
D

CC̄
(2(C1x+ C2y))−Bsin

√
D

CC̄
(2(C1x+ C2y))}2

]
+ p0

(3.11)

where p0 is arbitrary constant. Putting the value of A and F in equation (3.11)
we get

p = 4η(C2
1 + C2

2)
[C2

C1

− C1

C2

][
A1sin

√
D

CC̄
(2(C1x+ C2y))

+Bcos

√
D

CC̄
(2(C1x+ C2y))

]
− 8ρ(C2

1 + C2
2)(C1 + C2)2(A2

1 −B2)

sin2

√
D

CC̄
(2(C1x+ C2))− 4ρ(C2

1 + C2
2)2√

D
CC̄

A1Bsin2

√
D

CC̄
(2(C1x+ C2y))−

2ρΩ− σµ3H2
0φ

1+µ2φ2

2
√

D
CC̄

[ 1

C1

+
1

C2

][
A1sin

√
(2(C1x+ Cy)) +Bcos

√
D

CC̄
(2(C1x+ C2y))

]

+

η
k

+
σµ2H2

0

1+µ2φ2

D
CC̄

[C1

C2

− C2

C1

][A1sin

√
D

CC̄
(2(C1x+ C2y)) +Bcos

√
D

CC̄
(2(C1x+ C2y))

]
− 2ρ

D
CC̄

[
C2

2{Bsin
√

D

CC̄
(2(C1x+ C2y))− A1cos

√
D

CC̄
(2(C1x+ C2y))}2

+C2
1{A1cos

√
D

CC̄
(2(C1x+ C2y))−Bsin

√
D

CC̄
(2(C1x+ C2y))}2

]
+ p0

(3.12)

4. Conclusion
In this present work complex variable technique has been used for the deter-

mination of exact solution of steady, two dimensional, incompressible electrically
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conducting, MHD fluid in a rotating reference frame through porous media under
the presence of magnetic field with Hall effect. The basic equations governing the
motion have been given in vector form then we have considered the two dimen-
sional flows so that ~V and ~H lies in (x, y) plane. We have taken the system
of equations in the velocity field that the flow must satisfy and introduced the
vorticity and Bernoulli functions and have written the flow equations in terms
of these functions for our flows. Then we have employed the complex variables
z=x+iy and z̄=x-iy as our new independent variables to recast the equations in
solvable form. Further we have determined exact solution for straight parallel
flow. The expression for stream function, velocity field, vorticity and pressure
function are found out. Also the streamlines and streamsurface are plotted.
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