RANKS AND SETS EVINCING THEM FOR THE TANGENT DEVELOPABLE

EDUARDO BALLICO

Abstract. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate variety. We study the complement in the k-secant variety of X of the set of all points with X-rank k. In the case $k = 2$ this is contained in the tangent developable $\tau(X)$ of X and we study its X-ranks and the sets evincing them when X is a smooth OADP, i.e. $\dim X = n$, $r = 2n + 1$ and a general point of \mathbb{P}^{2n+1} is contained in a unique secant line of X.

1. Introduction

Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate variety defined over an algebraically closed field \mathbb{K} with characteristic 0. When we will speak about homology groups or cohomology groups or the fundamental group we will always assume $\mathbb{K} = \mathbb{C}$ without further mention.

For any set $A \subset \mathbb{P}^r$ let $\langle A \rangle$ denote its linear span. Fix any $q \in \mathbb{P}^r$. The X-rank $r_X(q)$ of X is the minimal cardinality of a finite set $S \subset X$ such that $q \in \langle S \rangle$. Any set $S \subset X$ such that $\vert S \vert = r_X(q)$ and $q \in \langle S \rangle$.

Chevalley’s theorem $S(X,q)$ is a constructible set and hence (over \mathbb{C}) it has the homotopy type of a finite CW-complex. Set $n := \dim X$. For any integer $k > 0$ the k-secant variety $\sigma_k(X)$ of X is the closure in \mathbb{P}^r of the union of all linear spaces $\langle S \rangle$ with $S \subset X$ and $\vert S \vert = k$. The projective algebraic set $\sigma_k(X)$ is irreducible and $\dim \sigma_k(X) \leq \min\{r, (n+1)k - 1\}$. If $k \geq 2$ and $\sigma_{k-1}(X) \not\subset \mathbb{P}^r$ we have $\sigma_{k-1}(X) \subset \sigma_k(X)$ and a general element $q \in \sigma_k(X)$ has $r_X(q) = k$. If $k \geq 2$ and $\sigma_{k-1}(X) \not\subset \mathbb{P}^r$ set $\sigma^0_k(X) := \{q \in \mathbb{P}^r \mid r_X(q)\}$. By Chevalley’s theorem $\sigma^0_k(X)$ is a constructible algebraic set. By assumption $\sigma^0_k(X)$ contains a non-empty Zariski open subset. Thus $\sigma_k(X)$, $\sigma^0_k(X)$ and $\sigma_k(X) \setminus \sigma^0_k(X)$ are constructible algebraic set and hence, being homotopic to finite CW-complexes, their homology and cohomology groups with integers coefficients are finitely generated abelian groups.

There are several examples in which $\sigma_k(X) \setminus \sigma^0_k(X)$ has complex codimension 1 and there is a hypersurface B of $\sigma_k(X)$ such that $B \subset \sigma_k(X) \setminus \sigma^0_k(X)$ ([3]). With the following very restrictive assumption on k we ask more refined topological questions, not always true without some strong assumptions.

Date: Received: May 15, 2019; Accepted: Jun 5, 2019.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 14JN05; Secondary 14M99.

Key words and phrases. X-rank; secant variety; tangential variety; smooth OADP.
Let \(\rho(X) \) be the maximal positive integer \(x \) such that every zero-dimensional scheme \(Z \subset X \) with \(\deg(Z) \leq x \) is linearly independent. If \(2k \leq \rho(X) \) we have \(\dim \sigma_k(X) = k(n + 1) - 1 \) and for every \(q \in \sigma_k(X) \setminus \sigma_{k-1}(X) \) there is a unique zero-dimensional scheme \(Z \subset X \) such that \(\deg(Z) = k \) and \(q \in \langle Z \rangle \); moreover \(Z \) is smoothable and Gorenstein ([6, 5]). The uniqueness part shows the existence of a locally closed irreducible set \(B \subset \sigma_k(X) \setminus \sigma_k(X) \) such that \(\dim B = k(n + 1) - 2 \) and for each \(q \in B \) there is \(Z \subset B \) formed by the union \(k - 2 \) points of \(X \) and a connected degree 2 scheme whose support is a smooth point of \(X \). The closure \(\overline{B} \) of \(B \) in \(\mathbb{P}^r \) (or in \(\sigma_k(X) \)) is described in the following way. Let \(\tau(X) \subseteq \mathbb{P}^r \) denote the tangential variety, i.e. the closure in \(\mathbb{P}^r \) of the union of all tangent spaces \(T_pX \) of \(X \) at \(p \in X_{\text{reg}} \). If \(k = 2 \) we have \(\overline{B} = \tau(X) \). If \(k > 2 \) the closed set \(\overline{B} \) is the join of \(\tau(X) \) and \(\sigma_{k-2}(X) \). We proved in [2] the uniqueness of the scheme \(Z \) at a general \(q \in B \) under milder assumptions. Here we pose the following question.

Question 1.1. Under which assumption on \(X \) and \(k \) the natural map of abelian groups \(H_2(\sigma_k(X),\mathbb{Z}) \to H_2(\sigma_k(X),\overline{B},\mathbb{Z}) \) has infinite cokernel (or the corresponding statement with \(\sigma_k^0(X) \cup B \) instead of \(\sigma_k(X) \) and \(\overline{B} \))? Do \(H_1(\overline{B},\mathbb{Z}) \) contains at least one copy of \(\mathbb{Z} \)?

The reader may also consider the dual question for cohomology groups and/or for other coefficient groups instead of integers and the query about \(\pi_1(\overline{B}) \). See Remark 2.3 for an explanation of why \(\overline{B} \) should matter.

The question is prompted by [9, 13] in which the authors showed how important for the applications is the path-connectedness of \(\sigma_k^0(X) \). We give a case in which Question 1.1 has a negative answer (Proposition 2.4).

Question 1.2. Is \(S(X,q) \) infinite for a general \(q \in \tau(X) \)?

Question 1.2 has an easy affirmative answer in several cases (see [3] when \(X \) is a curve with sufficiently large \(\rho(X) \)). In many cases there are some \(q \in \tau(X) \) such that \(|S(X,q)| = 1 \) (see Example 2.1). Thus it is really important to assume that we are requiring that \(q \) is general in \(\tau(X) \).

We prove the following case in which Question 1.2 has a positive answer.

Theorem 1.3. Let \(X \subset \mathbb{P}^{2n+1} \) be a smooth \(n \)-dimensional OADP. We have \(r_X(q) = 3 \) and \(\dim S(X,q) > 0 \) for a general \(q \in \tau(X) \).

2. The proofs

Example 2.1. Fix an integer \(r \geq 3 \). Let \(\nu_{r+1} : \mathbb{P}^1 \to \mathbb{P}^{r+1} \) be the order \(r + 1 \) Veronese embedding of \(\mathbb{P}^1 \). Set \(Y := \nu_{r+1}(\mathbb{P}^1) \). Fix \(a, b \in Y \) such that \(a \neq b \) and set \(Z := 2a + b \) \(Z \) is a degree 3 zero-dimensional scheme spanning a plane \(\langle Z \rangle \). Take a general \(o \in \langle Z \rangle \) and call \(\ell_o : \mathbb{P}^{r+1} \setminus \{o\} \to \mathbb{P}^r \) the linear projection for \(q \). Set \(X := \ell_o(Y) \) and \(L := \ell_o(\langle Z \rangle \setminus \{o\}) \). Take a general \(q \in L \). \(L \) is the tangent line of \(X \) at \(\ell_o(a) \) and hence \(q \in \tau(X) \setminus X \). Since \(L \) is spanned by \(\{\ell_o(a), \ell_o(b)\} \), we have \(r_X(q) = 2 \). Since \(\rho(Y) = r + 2 \), it is easy to check that \(\{a, b\} \) is the only element of \(S(X,q) \).

We recall the following definition ([8]). Let \(X \subset \mathbb{P}^{2n+1} \) be an integral and non-degenerate \(n \)-dimensional variety. \(X \) is said to be a variety with **only one**
apparent double point or an OADP for short if for a general \(q \in \mathbb{P}^r \) there is a unique secant line of \(X \). \(X \) is said to be a smooth OADP if it is smooth and it is an OADP variety. The existence of at least one secant line of \(X \) passing through a general \(q \in \mathbb{P}^{2n+1} \) is equivalent to \(\sigma_2(X) = \mathbb{P}^{2n+1} \), i.e. to \(r_{X,\text{gen}} = 2 \), and it implies that \(S(X,q) \) is finite. The condition \(|S(X,q)| = 1 \) for a general \(q \in \mathbb{P}^r \) is very strong: it obviously implies \(r + 1 \equiv 0 \pmod{n+1} \), \(n := \dim X \), and that \(X \) is not defective. When \(\dim X = 1 \) it implies that \(X \) is a rational normal curve ([7, Theorem 3.1]). For \(\dim X > 1 \) there is hope of a complete classification (at least for low \(\dim X \) and \(X \) smooth) only if \(r = 2n + 1 \).

Proof of Theorem 1.3: Fix a general \(q \in \tau(X) \).

(a) In this step we prove that \(r_X(q) = 3 \). Assume \(r_X(q) = 2 \). Since \(q \in \langle Z \rangle \) for some connected zero-dimensional scheme, we get the existence of at least 2 degree 2 smoothable zero-dimensional subscheme, \(Z \), of \(X \) whose linear span contains \(q \). The abstract join contains all such pairs \((Z,q)\). Since \(X \) is an OADP, we get that the set of all such \(Z \)'s has positive dimension and a general element of one of its component is formed by 2 points. Thus \(S(X,q) \) is infinite. We recall that the focus \(F(X) \) of \(X \) is the closure in \(\mathbb{P}^{2n+1} \) of the union of all focal secant lines, i.e. the union of all secant lines \(L \subset \mathbb{P}^{2n+1} \) such that a general \(o \in L \) is contained in infinitely many secant lines of \(X \) ([8, page 480]). A general secant line is not a focal line. Thus the set of all focal lines have dimension at most \(2n - 1 \). Any two secant lines meeting outside \(X \) are focal lines. Since any \(p \in F(X) \) is contained in infinitely many focal lines, we get \(\dim F(X) \leq 2n - 1 \). Since \(\dim \tau(X) = 2n \), we get \(r_X(q) > 2 \). Since \(r_{X,\text{gen}} = 2 \), the inequality \(r_X(q) \leq 4 \) is true for all \(q \in \mathbb{P}^{2n+1} \) by a general result due the Blekherman and Teitler ([4]). As in many other papers the proofs in [4] help to get a stronger statement in specific situations. Remember that \(r_X(a) = 2 \) for all \(a \in \mathbb{P}^{2n+1} \setminus \tau(X) \). Thus to prove that \(r_X(q) \leq 3 \) (and hence \(r_X(q) = 3 \)) it is sufficient to show that for a general \(p \in X \) the line \(L_p := \langle \{p,q\} \rangle \) is not contained in \(\tau(X) \). This is true, because \(q \) is general in \(\tau(X) \) and the join of \(X \) and \(\tau(X) \) contains \(\sigma_2(X) = \mathbb{P}^{2n+1} \).

(b) Now we observe that the proof of step (a) gave a one-dimensional family of elements of \(S(X,q) \). Call again \(p \) the only point of \(X \) such that \(q \in T_pX \). Take \(o \in T_pX \setminus F(X) \). Call \(S_o \) the only subset of \(X \) such that \(|S_o| = 2 \) and \(o \in \langle S_o \rangle \). We proved that for a general \(q \), i.e. for a general \(p \in X \) and a general \(q \in T_pX \) we have \(r_X(q) = 3 \) and \(p \not\in S_o \), i.e. \(p \cup S_o \in S(X,q) \). \(\square \)

Remark 2.2. The inequality \(r_X(q) \leq 3 \) for a general \(q \in \tau(X) \) is true (with the same proof) for all integral \(X \subset \mathbb{P}^r \) such that \(\sigma_2(X) = \mathbb{P}^r \).

Remark 2.3. Assume \(2 \leq k \leq \rho(X) \). For any positive integer \(x \) let \(\Delta_x \subset \mathbb{C}^x \) denote the open unit ball. Fix \(q \in B \). There is a fundamental family of open neighborhoods \(U \) of \(q \) in \(\sigma_k(X) \) for the euclidean topology such that for each \(U \in U \) the pair \((U, U \cap \sigma_k^0) \) is biholomorphic to \((\Delta_{2k-1}, \Delta_{2k-2} \times (\Delta_1 \setminus \{0\})) \). Hence the local fundamental group of the pair \((\sigma_k(X), \sigma_k^0(X))\) at \(q \) is isomorphic to \(\mathbb{Z} \). We think that in general these local contributions will not cancel globally in \((\sigma_k(X), \sigma_k^0(X))\).
Proposition 2.4. Let $X \subset \mathbb{P}^{2n+1}$, $n \geq 3$, be a smooth n-dimensional OADP. Then the natural map $H_2(\sigma_k(X), \mathbb{Z}) \to H_2(\sigma_k(X), \mathcal{B}, \mathbb{Z})$ is surjective and $\pi_1(\mathcal{B}) = 0$.

Proof. Recall that $\mathcal{B} = \tau(X)$. By the definition of OADP we have $\sigma_2(X) = \mathbb{P}^{2n+1}$ and $\sigma_2(X) \setminus \sigma_0^2(X) \subseteq \tau(X)$. $\tau(X)$ is an integral hypersurface and hence it is simply connected ([10, Corollary 5.3]). Use the homology sequence of a pair ([12, Ch. VII, §5]). □

Acknowledgement. The author was partially supported by MIUR and GN-SAGA of INdAM (Italy).

References

3. E. Ballico, A generic uniqueness result for an interpolation problem for the join of a tangential variety $\tau(X)$ and several copies of the variety $X \subset \mathbb{P}^r$, Gulf J. Math. 6 (2018), no. 1, 20–23.
5. W. Buczyński and J. Buczyński, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014), 63–90.
13. Y. Qin, P. Comon, Lek-Heng Lim and K. Ye, Path-connectedness of tensor ranks, eprint hal-0212115

1 Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy
Email address: ballico@science.unitn.it