ON THE X-RANKS ASSOCIATED TO A LINEAR SUBSPACE

EDOARDO BALlico

Abstract. Let $X \subset \mathbb{P}^N$ be an integral non-degenerate variety. For any $q \in \mathbb{P}^N$ the X-rank $r_X(q)$ of q is the minimal cardinality of a set $S \subset X$ whose linear span contains q. For any r-dimensional linear subspace $V \subset \mathbb{P}^N$ the X-rank $r_X(V)$ of V is the minimal cardinality of a set $S \subset X$ whose linear span contains V. We define several invariants related to the X-rank, e.g. the open rank of V, $r + 1$ integers $r_X(q_i)$, $0 \leq i \leq r$, with $r_X(q_i) \leq r_X(q_j)$ for all $i < j$ and q_0, \ldots, q_r a basis of V and minimal $\eta_X(V) := r_X(q_0) + \cdots + r_X(q_r)$. We always have $\eta_X(V) \geq r_X(V)$ and we give an upper bound for $\eta_X(V)$, which ensures that we may compute $r_X(V)$ with knowledge of q_0, \ldots, q_r and in particular check if $\eta_X(V) = r_X(V)$ (the general case, but not always). The integer $r_X(q_t)$ is the minimal integer t such that V is spanned by points of X-rank $\leq t$. Many of these invariants of V give lower bounds for the invariants of any linear subspace of V.

1. The main definitions and the main results

Let $X \subset \mathbb{P}^N$ be an integral and non-degenerate variety over \mathbb{C} (but we also consider the real field \mathbb{R} in section 3, while Proposition 1.3 and the definitions of the integers $\eta_X(V)$, $r_X,i(V)$, $0 \leq i \leq \dim(V)$ work over an arbitrary field). For each $q \in \mathbb{P}^N$ the X-rank $r_X(q)$ of q is the minimal cardinality of a finite set $S \subset X$ such that $q \in \langle S \rangle$, where $\langle \rangle$ denotes the linear span. When $N + 1 = \prod_{i=1}^{k}(n_i + 1)$, $k \geq 2$, and X is the Segre embedding of $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ the X-rank $r_X(q)$ of q is the tensor rank of the tensor of format $(n_1 + 1, \ldots, n_k + 1)$ associated to q. When $k = 2$ and X is the Segre embedding of $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ the tensor rank $r_X(q)$ is just the rank of the $(n_1 + 1) \times (n_2 + 1)$ matrix associated to q, but even in this classical case this notion leads to many research topics if (as in this paper) instead of a single point q we consider a linear space $V \subset \mathbb{P}^N$. Rank metric codes can be seen as a vector space of $n_1 \times n_2$ matrices where the entries are from a finite field and the rank distance is the rank of the difference between two matrices ([17], [21], [26], [30], [30], [32], [34]). The motivation of many of these works came from network codings ([27]). For linear spaces of matrices over a field with an upper/lower bound of their rank or of constant rank, see [4], [10], [17], [19], [28], [29]. When $N + 1 = \binom{n+d}{n}$ with n a positive integer, $d \geq 2$, and X is the order d Veronese embedding of \mathbb{P}^n, then $r_X(q)$ is the minimal number of addendum of the

* Corresponding author.

2010 Mathematics Subject Classification. Primary 14N05; Secondary 15A03; 15A69.

Key words and phrases. X-rank; tensor rank; linear subspace.
degree \(d\) homogeneous polynomial \(f(x_0, \ldots, x_n) \in \mathbb{C}[x_0, \ldots, x_n]\) associated to \(q\) in a decomposition \(f(x_0, \ldots, x_n) = \sum_i \ell_i(x_0, \ldots, x_n)^d\), where each \(\ell_i(x_0, \ldots, x_n)\) is a linear form; for this set-up the papers [15], [18], [23], [33, 1.2] look at the rank of a general \(r\)-dimensional linear subspace. Abo and Wan considered the case of several anti-symmetric forms ([1]).

For any integer \(t > 0\) the \(t\)-secant variety \(\sigma_t(X)\) of \(X\) is the closure in \(\mathbb{P}^N\) of the set of all \(q \in \mathbb{P}^N\) with \(r_X(q) = t\); here over \(\mathbb{C}\) we may take the closure either in the euclidean topology or the Zariski topology and get the same set \(\sigma_t(X)\). The set \(\sigma_1(X)\) is an irreducible projective variety, which contains all \(q \in \mathbb{P}^N\) with \(r_X(q) \leq t\) (but often it contains points with higher \(X\)-rank). We have \(\sigma_1(X) = X\) and \(\sigma_1(X) \subset \sigma_{t+1}(X)\) for all \(t > 0\). Let \(r_{X,\text{gen}}\) be the minimal integer \(x\) such that \(\sigma_x(X) = \mathbb{P}^N\), i.e. the only integer \(x\) such that \(r_X(q) = x\) for all \(q\) in a non-empty open subset of \(\mathbb{P}^N\) (either for the euclidean or the Zariski topology of \(\mathbb{P}^N\)).

In this paper we look at properties related to the \(X\)-rank, but for linear subspaces \(V \subset \mathbb{P}^N\). For each linear space \(V \subset \mathbb{P}^N\) the \(X\)-rank \(r_X(V)\) of \(X\) is the minimal cardinality of a finite set \(S \subset X\) such that \(V \subset \langle S \rangle\). Obviously \(r_X(\{q\}) = r_X(q)\) for all \(q \in \mathbb{P}^N\).

Adapting the proofs in [12] we get the following statement.

Proposition 1.1. Let \(V \subset \mathbb{P}^N\) be an \(r\)-dimensional linear subspace. Let \(\rho\) be the minimal value of all \(r_X(o), o \in V\). Then:

(i) \(r_X(V) \leq \min\{(r + 2)r_{X,\text{gen}}, (r + 1)r_{X,\text{gen}} + \rho\};

(ii) If \(u_1, \ldots, u_k \in V, k \geq 2\), are linearly independent, then \(r_X(V) \leq (r + 2 - k)r_{X,\text{reg}} + r_X(u_1) + \cdots + r_X(u_k)\).

There are two notions related to the \(X\)-rank and for which the proof of Proposition 1.1 may be extended with some effort. These two notions are related. They capture what happens if a part of \(X\) cannot be used for the interpolation, i.e. the finite set \(S\) used in the definition of \(X\)-rank must avoid a proper closed subset of \(X\). We fix a proper closed subset \(T \subset X\) for the Zariski topology. For any \(q \in \mathbb{P}^N\) (resp. linear subspace \(V \subset \mathbb{P}^N\)) let \(r_{X \setminus T}\) (resp. \(r_{X \setminus T}(V)\)) be the minimal cardinality of a finite set \(S \subset X \setminus T\) such that \(q \in \langle S \rangle\) (resp. \(V \subset \langle S \rangle\)). Obviously \(r_{X \setminus T}(q) \geq r_X(q)\) and \(r_{X \setminus T}(V) \geq r_X(V)\). The proof of Proposition 1.1 and of Proposition 3.1 below works verbatim using \(r_{X \setminus T}\) and \(r_{X \setminus T,\mathbb{R}}\) instead of \(r_X\) and \(r_{X,\mathbb{R}}\), respectively. The notion of open rank is more subtle (it was introduced by J. Jelsiejew in [25], inspired by a related notion for affine varieties introduced in [8] and [9]). The open rank \(ora_X(q)\) of \(q \in \mathbb{P}^N\) is the minimal integer \(t > 0\) such that for every Zariski closed proper subset \(T \subset X\) there is a set \(S_T \subset X \setminus T\) with \(\sharp(S_T) \leq t\) and \(q \in \langle S_T \rangle\). Obviously \(ora_X(q) \geq r_X(q)\) and \(ora_X(q) \geq r_{X \setminus T}(q)\) for any closed \(T \subset X\), but often \(ora_X(q) > r_X(q)\) (always if \(r_X(q) = 1\), i.e. if \(q \in X\)). There is a case for the symmetric tensor rank in which the maximal value of the rank is strictly less than the maximal value of the open rank ([6], i.e. trivariate homogeneous polynomials of degree 4). There are cases in which the generic rank is not the generic open rank, i.e. there is no non-empty open subset \(U \subset \mathbb{P}^N\) (for the Zariski or the euclidean topology) such that \(ora_X(q) = r_{X,\text{gen}}\) for all \(q \in U\). Take any non-defective \(X \subset \mathbb{P}^N\) such that \(a := (N + 1)/(\dim(X) + 1)\) is an integer; when \(a := (N + 1)/(\dim(X) + 1) \in \mathbb{N}\), \(X\) is non-defective if and only
if $\sigma_a(X) = \mathbb{P}^N$, i.e. if and only if $a = r_{X,\text{gen}}$. By assumption and a dimensional count there is a non-empty open subset $U \subset \mathbb{P}^N$ for the Zariski topology such that $r_X(q) = a$ for all $q \in U$ and for each $q \in U$ there are only finitely many $S \subset X$ with $\sharp(S) = a$ and $q \in \langle S \rangle$. We claim that $\text{ora}_X(q) > a$ for every $q \in U$. Fix $q \in U$ and take the finitely many sets S_1, \ldots, S_k such that $\sharp(S_i) = a$ and $q \in \langle S_i \rangle$. Set $T := S_1 \cup \cdots \cup S_k$. By the definition of T there is no $S \subset X \setminus T$ with $\sharp(S) = a$ and $q \in \langle S \rangle$; if $\dim(X) > 1$ we may even take instead of $S_1 \cup \cdots \cup S_k$ an irreducible $T_1 \subset X$ with $T_1 \supset S_1 \cup \cdots \cup S_k$. Hence the generic open rank is at least $a + 1$. We may find many examples $X \subset \mathbb{P}^N$ as above among the Veronese embeddings of a projective space \mathbb{P}^n with respect to the complete linear system $|\mathcal{O}_{\mathbb{P}^n}(d)|$, $d > 2$, i.e. in the set up of the rank 1 decomposition of homogeneous polynomials; in this case $N + 1 = \binom{n + d}{n}$ and it is sufficient to assume $\binom{n + d}{n} \equiv 0 \pmod{n + 1}$ and that (n, d) is not in the Alexander-Hirschowitz list of defective Veronese embeddings of degree > 2 ([2], [3], [13]), i.e., with the assumption $\binom{n + d}{n} \equiv 0 \pmod{n + 1}$ and $d > 2$, if and only if $(n, d) \notin \{ (2, 4), (4, 3) \}$. For instance if $n = 2$ it is sufficient to take any integer $d \geq 5$ with $d \equiv 1, 2 \pmod{3}$.

For any linear subspace $V \subset \mathbb{P}^N$ the open rank of V is the minimal integer $t > 0$ such that for every Zariski closed proper subset $T \subset X$ there is a set $S_T \subset X \setminus T$ with $\sharp(S_T) \leq t$ and $q \in \langle S_T \rangle$.

In section 2 we adapt the proof of Proposition 1.1 to the open rank and get the following result.

Theorem 1.2. Let $V \subset \mathbb{P}^N$ be an r-dimensional linear subspace. Let ρ be the minimal value of all $\text{ora}_X(o)$, $o \in V$. Then

(i) $\text{ora}_X(V) \leq \min\{(r + 2)r_{X,\text{gen}}, (r + 1)r_{X,\text{gen}} + \rho\}$.

(ii) If $u_1, \ldots, u_k \in V$, $k \geq 2$, are linearly independent, then $r_X(V) \leq (r + 2 - k)r_{X,\text{reg}} + \text{ora}_X(u_1) + \cdots + \text{ora}_X(u_k)$.

As in [12] we may extend this type of results over \mathbb{R} with very mild assumptions (see section 3).

For a linear subspace V with $r := \dim(V) > 0$ many other invariants may be defined in the following way. For any integer r such that $0 \leq r \leq N$ let $G(r, N)$ denote the Grassmannian of all r-dimensional linear subspaces of \mathbb{P}^N. Let $V \subset \mathbb{P}^N$ be a linear subspace. Set $r_{X,\text{max}}(V) := \max_{q \in V} r_X(q)$ and $r_{X,\text{min}}(V) := \min_{q \in V} r_X(q)$. Let $r_{X,\text{gen}}(V)$ denote the only integer t such that there is a non-empty open subset $U \subset V$ with $r_X(q) = t$ for all $q \in U$ (it is called the generic X-rank of V). If X is defined over \mathbb{R} with $X_{\text{reg}}(\mathbb{R}) \neq \emptyset$, then $r_{X,\mathbb{R},\text{max}}(V) := \max_{q \in V} r_{X,\mathbb{R}}(q)$ and $r_{X,\mathbb{R},\text{min}}(V) := \min_{q \in V} r_{X,\mathbb{R}}(q)$. In this case we may also define the X-typical ranks of V, i.e. the integers t for which there is a non-empty euclidean open set $E \subset V$ with $r_{X,\mathbb{R}}(q) = t$ (see section 3). In certain situations related to coding theory small $r_{X,\text{min}}(V)$ is bad, while in other situations small $r_{X,\text{min}}(V)$ is good. For instance, software programs which compute the tensor rank of tensors and the rank of homogeneous polynomials are more effective for low rank tensors. By Proposition 1.1 small $r_{X,\text{min}}(V)$ helps to get an upper bound for $r_X(V)$. For a general $V \subset G(r, N)$ the invariant $r_{X,\text{min}}(V)$ is computed in terms of the dimensions of the secant varieties $\sigma_t(V)$, $t > 0$.

For any $V \in G(r, N)$ let $\eta_X(V)$ be the minimal integer x such that there is $S \subset V$ with S spanning V and $x = \sum_{q \in S} r_X(q)$. We obviously have

$$r_X(V) \leq \eta_X(V) \leq (r + 1) r_{X, \min}(V)$$

Define the flag $U_0 \subset \cdots \subset U_h$, $h \geq 0$, and the integers $\ell_{X,0}(V), \ldots, \ell_{X,h}(V)$, $r_{X,0}(V) \leq \cdots \leq r_{X,r}(V)$, in the following way. Let U_0 be the linear span of all $v \in V$ with $r_X(v) = r_{X,\min}(V)$. Set $\ell_{X,0}(V) := \dim(U_0)$ and $r_{X,i}(V) = r_{X,\min}(V)$ for all $i = 0, \ldots, \ell_{X,0}(V)$. If $U_0 = V$, i.e. if $\ell_{X,0}(V) = r$, then we take $h = 0$ and stop. Now assume $\ell_{X,0}(V) < r$. Let $r_{X,\ell_{X,0}(V)+1}(V)$ be the minimal integer $r_X(v)$ for some $v \in V \setminus U_0$. Let $U_1 \subseteq V$ be the linear span of the union of U_0 and all $v \in V \setminus U_0$ with $r_X(v) = r_{X,\ell_{X,0}(V)+1}(V)$. Set $\ell_{X,1}(V) = \dim(U_1)$ and $r_{X,i}(V) = r_{X,\ell_{X,0}(V)+1}(V)$ for all $x \in \{\ell_{X,0}(V) + 1, \ldots, \ell_{X,1}(V)\}$. If $U_1 = V$, i.e. if $\ell_{X,1}(V) = r$, then we stop. Now assume $\ell_{X,1}(V) < r$. Let $r_{X,\ell_{X,1}(V)+1}(V)$ be the minimal integer $r_X(v)$ for some $v \in V \setminus U_1$. Let $U_2 \subseteq V$ be the linear span of the union of U_1 and all $v \in V \setminus U_1$ with $r_X(v) = r_{X,\ell_{X,1}(V)+1}(V)$. Set $\ell_{X,2}(V) = \dim(U_2)$ and $r_{X,i}(V) = r_{X,\ell_{X,1}(V)+1}(V)$ for all $x \in \{\ell_{X,1}(V) + 1, \ldots, \ell_{X,2}(V)\}$. And so on.

Proposition 1.3. Fix $s \in \{0, \ldots, r\}$ and let $W \subseteq V$ be any s-dimensional linear subspace. Then $\eta_X(W) \leq \sum_{i=0}^s r_{X,i}(V)$.

Using Proposition 1.3 we get the following recipe to compute all integers $\eta_X(V)$, $\ell_{X,j}(V)$ and $r_{X,i}(V)$. Take $q_0 \in V$ such that $r_X(q_0) = r_{X,\min}(V)$. If $r = 0$, then stop. If $r > 0$, then take $q_1 \in V \setminus \{q_0\}$ with minimal rank. If $r = 1$, then set $\eta_X(V) = r_X(q_0) + r_X(q_1)$ and then stop. Now assume $r > 1$. Assume to have defined linearly independent points $q_0, \ldots, q_s \in V$, $s < r$, such that for $h = 1, \ldots, s - 1$, $r_X(q_h)$ is the minimal X-rank of a point of $V \setminus \{(q_0, \ldots, q_{h-1})\}$. Since $s < r$, we have $V \supseteq \{(q_0, \ldots, q_s)\}$. Let q_{s+1} be any point of $V \setminus \{(q_0, \ldots, q_s)\}$ with minimal X-rank. And so on. We obtain in this way $r + 1$ points q_0, \ldots, q_r with non-decreasing X-rank and spanning V.

Claim: We have $r_{X,i}(V) = r_X(q_i)$ for all $i, q_i \in U_e$ if and only if $i \leq \ell_{X,e}(V)$ and each U_j is spanned by $U_j \cap \{q_0, \ldots, q_r\}$.

Proof of the Claim: Since q_0, \ldots, q_r are linearly independent, the second and the third statement of the Claim are equivalent. The case $i = 0$ of the first statement is true, because $r_X(q_0) = r_{X,\min}(V)$. Moreover $q_0 \in U_0$ by the definitions of U_0 and of q_0. Now assume $i > 0$ and that $r_{X,j}(V) = r_X(q_j)$ for all $j < i$. Set $U_{i-1} := \emptyset$. Let e be the minimal non-negative integer such that $i \leq \ell_{X,e}(V)$. If $i - 1 \leq \ell_{X,e-1}$, then set $f := e - 1$, otherwise set $f := e$. By the inductive assumption we have $q_0, \ldots, q_{i-1} \in U_f$. First assume $f < e$, i.e. $f = e - 1$, i.e. $r_{X,i}(V) > r_{X,j-1}(V)$. In this case we have $U_f = \{q_0, \ldots, q_{i-1}\}$. Since $q_i \notin U_f$, $U_f = \{q_0, \ldots, q_{i-1}\}$ and $r_{X,i}(V)$ is the minimal X-rank of an element of $V \setminus U_f$, we have $r_X(q_i) \geq r_{X,i}(V)$. Since $\{q_0, \ldots, q_{i-1}\} = U_f$, our choice of q_i gives $r_X(q_i) \leq r_{X,i}(V)$. Now assume $f = e$. In this case we have $r_{X,i}(V) = r_{X,i-1}(V)$. Set $t := \ell_{X,e-1}(V)$. We have $U_{e-1} = \{q_0, \ldots, q_t\}$. There is an $\ell_{X,e}(V)$-dimensional linear subspace U_e of V spanned by U_{e-1} and $\ell_{X,e}(V) - \ell_{X,e-1}(V)$ linearly independent elements with X-rank $r_{X,i}(V) = r_{X,i-1}(V)$, while $U_e \setminus U_{e-1}$ has no element with X-rank $< r_{X,i}(V)$. By the inductive assumption we also
have \(q_j \in U_e \) for all \(j < i \) and \(U_{e-1} = \langle \{ q_0, \ldots, q_t \} \rangle \). The definition of \(q_i \) gives \(r_X(q_i) = r_{X,i}(V) \).

This procedure shows that the integer \(\delta_X(V) := r_X(q_t) \) is an invariant of \(X \) and the linear space \(V \). The integer \(\delta_X(V) \) is the minimal integer \(t \) such that \(V \) is spanned by the points of \(V \) with \(X \)-rank at most \(t \). If \(V \) is an \(s \)-dimensional linear subspace of \(V \), then the Claim implies \(\delta_X(W) \geq r_{X,s}(V) \). Obviously \(\langle \{ q_0, \ldots, q_s \} \rangle \) is an \(s \)-dimensional subspace of \(V \) with \(\delta_X(\langle \{ q_0, \ldots, q_s \} \rangle) = r_{X,s}(V) \).

Take any \(V \in G(r,N) \) and assume that the set of all \(q \in V \) with \(r_X(q) = r_{X,\min}(V) \) spans \(V \). In this case we obviously have \(r_X(V) \leq (r + 1)r_{X,\min}(V) \). Can we improve this upper bound for \(r_X(V) \)? If \(r_{X,\min}(V) = 1 \), i.e. if \(V \cap X \neq \emptyset \), then this bound cannot be improved, because \(r_X(V) \geq r + 1 \) for all \(V \in G(r,N) \). Now assume that \(V \) is general in \(G(r,N) \) and set \(z := r_{X,\min} \) and \(e := \deg(\sigma_z(X)) \) and \(g := N - \dim(\sigma_z(X)) \).

Proposition 1.4. Set \(n := \dim(X) \), \(a := r_{X,\text{gen}} \). For any \(i \in \{ 1, \ldots, a \} \) set \(\sigma(i) := \dim(\sigma_i(X)) \). Set \(\sigma(0) = -1 \) and \(\sigma_0(X) = \emptyset \). Fix a general \(V \in G(r,N) \).

(i) We have \(r_{X,\text{gen}}(V) = a \).

(ii) If \(r < N - \sigma(a - 1) \), then \(r_{X,\min}(V) = a \).

(iii) For any \(i < a \) there is \(q \in V \) with \(r_X(q) = i \) if and only if \(r \geq N - \sigma(i) \).

(iv) Assume \(r \geq N - \sigma(i) \). The integer \(z := r_{X,\min}(V) \) is the positive integer \(\leq a - 1 \) such that \(N - \sigma(z) \leq r < N - \sigma(z - 1) \).

(v) We have \(r_{X,i}(V) = r_{X,\min}(V) \) for all \(i = 0, \ldots, r \), and hence \(r_X(V) \leq \eta_X(V) = (r + 1)r_{X,\min}(V) \).

In general the inequality \(r_X(V) \leq \eta_X(V) \) is very rough. If we are only interested in the case of a general \(V \in G(r,N) \) in some important cases (e.g. if \(X \subset \mathbb{P}^N \) is a Veronese embedding of a projective space as in [15], [18], [23]), this integer is the minimal integer \(t \) such that \(\sigma_t(X) = \mathbb{P}^N \), where \(X \subset \mathbb{P}^N \) is a certain embedding of a variety \(\tilde{X} \) constructed from the embedding \(X \subset \mathbb{P}^N \). For an arbitrary \(X \) we know a general result for the uniqueness of the set evincing the \(X \)-rank of a point \(q \in \mathbb{P}^N \) ([14, Theorem 1.18] is stated for the symmetric tensor rank, but its proof works in the general case). For these type results it was introduced the following invariant of the embedding \(X \subset \mathbb{P}^N \). Let \(\rho(X) \) be the maximal positive integer \(t \) such that any set \(S \subset X \) with \(z(S) \leq t \) is linearly independent. We have \(2 \leq \rho(X) \leq N + 1 \). It is easy to check that \(\rho(X) = N + 1 \) if and only if \(X \) is a rational normal curve of \(\mathbb{P}^N \). We have \(\rho(X) = d + 1 \) if \(X \subset \mathbb{P}^N \), \(N = -1 + \binom{n+d}{n} \), is the order \(d \) Veronese embedding of \(\mathbb{P}^n \). In section 2 we prove the following result.

Theorem 1.5. Take any \(V \in G(r,N) \).

(i) If \(2r_X(V) \leq \rho(X) + r \), then there is a unique set \(S \subset X \) such that \(z(S) \leq r_X(V) \) and \(V \subseteq \langle S \rangle \).

(ii) Assume \(2\eta_X(V) \leq \rho(X) + r \). The integer \(r_V(V) \) is computed in the following way. Take \(q_0, \ldots, q_t \in V \) such that \(r_X(q_i) = r_{X,i}(V) \) and \(\langle \{ q_0, \ldots, q_t \} \rangle = V \). Take any \(S_i \subset X \) such that \(z(S_i) = r_X(q_i) \) and \(q_i \in \langle S_i \rangle \). Set \(S := \cup_{i=0}^t S_i \). Then \(r_X(V) = z(S) \) and \(S \) is the only subset \(A \subset X \) with \(z(A) = r_X(V) \) and \(V \subseteq \langle A \rangle \).
Now we shows why part (ii) of Theorem 1.5 shows (for any $r > 0$) how to construct examples $V, M \in G(r, N)$ with $r_X(V) = \eta_X(V)$, $r_X(M) < \eta_X(M)$ and $\eta_X(V) = \eta_X(M) < (\rho(X) + r)/2$. Fix any $r + 1$ linearly independent points q_0, \ldots, q_r with $r_X(q_i) \leq r_X(q_j)$ for all $i \leq j$ and $\sum_{i=0}^r r_X(q_i) \leq 2\rho(X) + r$. Set $V := \langle \{q_0, \ldots, q_r\} \rangle$. Since $2r_X(q_i) \leq \rho(X)$, there is a unique $S_i \subset X$ such that $\sharp(S_i) = r_X(q_i)$ and $q_i \in \langle S_i \rangle$. Set $S := \bigcup_{i=1}^r S_i$. By part (ii) of Theorem 1.5 we have $r_X(V) = \sharp(S)$. By the Claim and Proposition 1.3 we have $\eta_X(V) = \sum_{i=0}^r r_X(q_i) = \sum_{i=0}^r \sharp(S_i)$. Hence $r_X(V) = \ell_X(V)$ if and only if $S_i \cap S_j$ for all $i \neq j$. We may also reverse the construction. We start with sets $S_i \subset X$, $i = 0, \ldots, r$, with $S_0 \neq \emptyset$, $\sharp(S_i) \leq \sharp(S_j)$ for all $i \leq j$ and $\sum_{i=0}^r \sharp(S_i) \leq 2\rho(X) + r$. This inequality implies that each S_i is linearly independent and that if $p_i \in \langle S_i \rangle$, then $r_X(p_i) = \sharp(S_i)$ if and only if there is no $S' \subset S_i$ with $p_i \in \langle S' \rangle$. We also assume that for all $i = 1, \ldots, r$, then $S_i \not\subset \langle \bigcup_{h=0}^{i-1} S_h \rangle$. Take a general $q_i \in \langle S_i \rangle$. We saw that $r_X(q_i) = \sharp(S_i)$. Since $S_i \not\subset \langle \bigcup_{h=0}^{i-1} S_h \rangle$ for $i = 1, \ldots, r$ we have $q_i \notin \langle \{q_0, \ldots, q_{i-1}\} \rangle$. Hence we may easily construct V, M with $r_X(V) = \eta_X(V)$ and $r_X(M) < \eta_X(M)$ (note that we may take arbitrary set $S_i \neq \emptyset$ with $\sum_{i=0}^r \sharp(S_i) \leq \rho(X) + r$).

In all cases with uniqueness (e.g. in Theorem 1.5) we obviously have $\text{ora}_X(V) > r_X(V)$ and $\text{ora}_X(q_i) > r_X(q_i)$ for all i.

2. The proofs

Proof of Proposition 1.1: Fix $o \in V$ with $r_X(o) = \rho$ and set $a := r_{X, \text{gen}}$. Take a non-empty open subset $U \subset \mathbb{P}^N$ (either for the euclidean or the Zariski topology of \mathbb{P}^N) such that $r_X(q) = a$ for all $q \in U$. Fix $q \in U$ and set $W := \{q\} \cup V$. We have $\dim(W) \leq r + 1$ and $W \supseteq V$. Since $q \notin W \cap U$, the set $U \cap W$ is a non-empty open subset of W (for the euclidean or the Zariski topology). Hence there are $e_1, \ldots, e_{r+2} \subset U \cap W$ spanning W. Since $r_X(e_i) = q$, there is $S_i \subset X$ such that $\sharp(S_i) = a$ and $e_i \in \langle S_i \rangle$. Set $S := S_1 \cup \cdots \cup S_{r+2}$. We have $\sharp(S) \leq (r + 2)a$ and $W \subset \langle S \rangle$. Since $W \supseteq V$, we get $r_X(V) \leq (r + 2)a$. Since $o \in W$ and $U \cap W$ contains a non-empty open subset of W, there are $f_1, \ldots, f_{r+1} \subset U \cap W$ such that $\{o, f_1, \ldots, f_{r+1}\}$ spans W. As above we get $r_X(V) \leq r_X(o) + (r + 1)a$. In the same way we get part (ii). \hfill \Box

Proof of Theorem 1.2: Fix $o \in V$ with $r_X(o) = \rho$ and set $a := r_{X, \text{gen}}$. Fix a closed subset $T \subset X$. By the definition of open rank there are $A, A_i \subset X \setminus T$, $1 \leq i \leq k$, such that $\sharp(A) = \rho$, $\sharp(A_i) = \text{ora}_X(u_i)$ for all $i \in A$ and $u_i \in \langle A_i \rangle$ for all i.

Claim 1: There is a non-empty open subset $U' \subset \mathbb{P}^N$ such that for each $q \in U'$ there is $S_q \subset X \setminus T$ with $\sharp(S_q) = a$ and $q \in \langle S_q \rangle$.

Proof of Claim 1: By assumption we have $\sigma_a(X) = \mathbb{P}^N$, i.e. \mathbb{P}^N is the Zariski closure of the union of all linear spaces $\langle S \rangle$ with $S \subset X$, S linearly independent and $\sharp(S) = a$. Any point of X is a limit of a family of points of $X \setminus T$. Hence \mathbb{P}^N is the Zariski closure of the union of all linear spaces $\langle S \rangle$ with $S \subset X \setminus T$, S linearly independent and $\sharp(S) = a$. Let $Z \subset (X \setminus T)^a$ be the set of all $(b_1, \ldots, b_a) \in (X \setminus T)^a$ which are linearly independent. Z is a non-empty Zariski open subset of $(X \setminus T)^a$. Let $\Pi \subset Z \times \mathbb{P}^N$ be the set of all pairs (b, q) with $b = (b_1, \ldots, b_a)$ and $q \in \langle \{b_1, \ldots, b_a\} \rangle$. Π is an irreducible variety of dimension $a \dim(X) - 1$. Let $\pi : \Pi \rightarrow \mathbb{P}^N$ the projection onto the last factor. By assumption
\mathbb{P}^N is the Zariski closure of the image $\text{Im}(\pi)$ of π. By Chevalley’s theorem $\text{Im}(\pi)$ is a constructible subset of \mathbb{P}^N for the Zariski topology. Hence the image of π contains a non-empty open subset U' for the Zariski topology. The set U' satisfies the thesis of Claim 1.

With Claim 1 the proof of Proposition 1.1 goes verbatim for the open rank, using U' instead of U.

Proof of Proposition 1.3: We use induction on the integer r (applied to all linear subspaces of \mathbb{P}^N). For any fixed integer r we use induction on the integer s. For any r the case $s = 0$ is trivially true, because for any linear space M with $\dim(M) = r$ we have $r_{X, \min}(M) = r_{X, \min}(N)$ if $N \supseteq M$. Hence we may assume that $r \geq s > 0$. Let $\mathcal{W}(0) \subset \cdots \subset \mathcal{W}(h') = \mathcal{W}$, $h' \geq 0$, be the flag of linear subspaces of \mathcal{W} obtained as in the definition of the integer $h \geq 0$ and the flag $\mathcal{U}_0 \subset \cdots \subset \mathcal{U}_s = \mathcal{W}$ of \mathcal{W} using \mathcal{W} instead of V. Take a basis $\{q_0, \ldots, q_r\}$ of \mathcal{W} with $\mathcal{W}(q_i) = \mathcal{W}_{X,i}(V)$ for all i and each \mathcal{U}_i is spanned by $\mathcal{U}_i \cap \{q_0, \ldots, q_r\}$. Take a basis $\{p_0, \ldots, p_s\}$ of \mathcal{W} with $\mathcal{W}(p_i) = \mathcal{W}_{X,i}(W)$, $i = 0, \ldots, s$ and such that each $\mathcal{W}(i)$ is spanned by $\mathcal{W}(i) \cap \{p_0, \ldots, p_s\}$. Let \mathcal{W}' be the linear span of $\{p_0, \ldots, p_{s-1}\}$. By the inductive assumption for each integer $j < s$ we have $\sum_{i=0}^j r_{X}(p_i) \geq \sum_{i=0}^j q_i$. If $\mathcal{W}(p_s) \geq \mathcal{W}(q_s)$, then we are done. Now assume $\mathcal{W}(p_s) < \mathcal{W}(q_s)$. Since $\mathcal{W}(p_s) \geq \mathcal{W}(p_i)$ for all $i \leq s$, we get that the linear span \mathcal{T} of the set of all $v \in \mathcal{W}$ with $\mathcal{W}(v) < \mathcal{W}(q_s)$ has dimension at least s. Hence $\mathcal{W}_{X,s}(\mathcal{V}) < \mathcal{W}(q_s)$, a contradiction. □

Remark 2.1. The case $s = r$ of Proposition 1.3 implies that $\eta_{X}(V) = \sum_{i=0}^r \mathcal{W}_{X,i}(V)$.

Proof of Proposition 1.4: Since V is general, it contains a general point of \mathbb{P}^N and hence part (i) is trivial. For any integer $i \in \{1, \ldots, a-1\}$ set $\mathcal{W}_i(X) := \{q \in \mathcal{W}_{X} | r_{X}(q) = i\}$. The set $\mathcal{W}_i(X)$ contains a non-empty open subset of $\mathcal{W}_i(X)$ and in particular the closure of $\mathcal{W}_i(X) \cap \mathcal{W}_i(X)$ is a finite union of algebraic sets of dimension $< r_{X}(q)$. Since V is general, for any $i > 0$ we have $V \cap \mathcal{W}_i(X) \neq \emptyset$ if and only if $r \geq N - r_{X}(q)$. Hence $r_{X, \min}(V) > i$ if $r < N - r_{X}(q)$. Now assume $r \geq N - r_{X}(q)$ and hence $V \cap \mathcal{W}_i(X) \neq \emptyset$. We get $\dim(V \cap \mathcal{W}_i(X))) = \sigma(i) + r - N$, $\dim(V \cap (\mathcal{W}_i(X) \setminus \mathcal{W}_i(X))) < r_{X}(q) + r - N$ and so $V \cap (\mathcal{W}_i(X) \setminus \mathcal{W}_i(X))) \neq \emptyset$.

Now we prove part (v). Set $z := r_{X, \min}(V)$. It is sufficient to prove that V is spanned by $r+1$ points with z as their X-rank. If $z = a$, then we are done, because a non-empty Zariski open subset of V is formed by points q with $r_{X}(q) = z$. Now assume $z < a$. By assumption $N - \sigma(z) \leq r < N - \sigma(z - 1)$. Let W be a general linear subspace of V with $\dim(W) = N - \sigma(z)$. Since V is general, W is a general element of $G(N - \sigma(z), N)$. Hence $W \cap \mathcal{W}_i(X)$ is finite and contained in $\mathcal{W}_i(X)$. Since X is irreducible, $\mathcal{W}_i(X)$ is irreducible. Hence $\mathcal{W}_i(X) \cap M$ is an irreducible curve for a general $M \in G(N - \sigma(z) + 1, N)$. Since W is general, we may take as M a subspace containing W. Take any hyperplane $H \subset \mathbb{P}^N$. Since $\mathcal{W}_i(W)$ is reduced and connected, we have $h^1(\mathcal{P}^N, \mathcal{I}_{\mathcal{W}_i(X)}) = 0$. Thus the exact sequence $0 \to \mathcal{I}_{\mathcal{W}_i(X)} \to \mathcal{I}_{\mathcal{W}_i(X)}(1) \to \mathcal{I}_{\mathcal{W}_i \cap H}(1) \to 0$

gives that $H \cap \mathcal{W}_i(X)$ spans H. Taking a hyperplane of H and iterating the trick several times we first obtain that the integral curve $\mathcal{W}_i(X) \cap M$ spans M and then
that the finite set \(\sigma_z(X) \cap W \) spans \(W \). Since \(\sigma_z(X) \cap W = \sigma_\rho(X) \cap W \), \(W \) is spanned by points with \(X\)-rank \(z \). Varying \(W \) in \(V \) we get that \(V \) is spanned by points with \(X\)-rank \(z \).

Proof of Theorem 1.5: We first prove part (i). We use induction on \(r \). Since the case \(r = 0 \) is true by the proof of [14, Theorem 1.18], we may assume \(r > 0 \). Take \(A, S \subset X \) with \(\sharp(S) = r_X(V) \), \(\sharp(A) = r_X(V) \), \(V \subset \langle S \rangle \cap \langle A \rangle \) and \(S \neq A \). The definition of the integer \(r_X(V) \) gives \(\sharp(A) = \sharp(S) = r_X(V) \).

First assume \(A \cap S = \emptyset \). Take \(A_2 \subset A \) with \(\sharp(A_2) = A - r \) and \(V \cap \langle A_2 \rangle \) a single point. Since \(V \subset \langle S \rangle \) and \(A_2 \cap S = \emptyset \), \(A_2 \cup S \) is linearly dependent. Since \(\sharp(S \cup A_2) \leq \rho(X) \), we get a contradiction.

Now assume \(S \cap A \neq \emptyset \) and set \(A_1 := A \setminus A \cap S \), \(S_1 := S \setminus S \cap A \), \(e := \sharp(A \cap S) \) and \(W := V \cap \langle A_1 \rangle \cap \langle S_1 \rangle \). Since \(S \neq A \) and no proper subset of \(A \) spans \(V \), we have \(S_1 \neq A_1 \), \(S_1 \neq \emptyset \), \(A_1 \neq \emptyset \), \(A_1 \neq S_1 \) and \(\dim(W) = r - e \). Apply the first part to \(W \), \(A_1 \) and \(S_1 \).

Now we prove part (ii). Since part (ii) follows from part (i) when \(r = 0 \), we may assume that \(r > 0 \) and use induction on \(r \). We have \(\sharp(S) \leq \sum_{i=0}^{\infty} r_X(q_i) = \eta_X(V) \) and \(V \subset \langle S \rangle \). Hence \(r_X(V) \leq \sharp(S) \). Let \(S' \) be the minimal subset of \(S \) such that \(V \subset \langle S' \rangle \). Take any \(A \subset X \) with \(\sharp(A) = r_X(V) \) and \(V \subset \langle A \rangle \) and assume \(S \neq A \). Since \(\sharp(A) + \sharp(S) \leq 2\eta_X(V) \leq \rho(X) + r \), the proof of part (i) gives \(A = S' \). If \(S' = S \), then the proof of part (ii) is over. Now assume \(S' \not\subset S \). Set \(M := \{q_0, \ldots, q_{r-1}\} \). We have \(\dim(M) = r - 1 \). The definition of \(q_0, \ldots, q_{r-1} \) gives \(r_{X,i}(M) = r_{X,i}(V) \). Since \(\dim(M) = r - 1 \), the inductive assumption implies \(S_i \cap S' = S \) for all \(i < r \). Take \(N := \{q_1, \ldots, q_r\} \). The Claim in the introduction gives \(r_{X,i}(N) = r_{X,i+1}(V) \) for all \(i < r \). The inductive assumption gives \(S_i \cap S' = S_i \) for all \(i > 0 \) and in particular \(S_r \subset S' \). Thus \(S' = S \), a contradiction.

\(\square \)

3. Over \(\mathbb{R} \)

Let \(X \subset \mathbb{P}^N \) be a geometrically integral variety defined over \(\mathbb{R} \). We write \(X(\mathbb{R}) \subset \mathbb{P}^N(\mathbb{R}) \) for the real points of \(X \) and \(X(\mathbb{C}) \subset \mathbb{P}^N(\mathbb{C}) \) for the complex points of \(X \) (we called them \(X \) in the other sections). Recall that “geometrically integral” means that the complex variety \(X_{\mathbb{C}} \) (the same real equations of \(X \), but seen in \(\mathbb{P}^N(\mathbb{C}) \)) is an integral complex variety. We require that \(X(\mathbb{R}) \) contains at least one smooth point of \(X(\mathbb{C}) \) (usually this is written down as \(X_{\text{reg}}(\mathbb{R}) \neq \emptyset \)). This assumption implies that \(X_{\text{reg}}(\mathbb{R}) \) spans the real projective space \(\mathbb{P}^N(\mathbb{R}) \) (linear span with real coefficients) and hence the complex projective space \(\mathbb{P}^N(\mathbb{C}) \) (linear span with complex coefficients). A typical \(X\)-rank is an integer \(t > 0 \) such that there is a non-empty open subset \(E \subset \mathbb{P}^N \) for the euclidean topology with \(r_{X,E}(q) = t \) for all \(q \in E \) ([7], [11], [12], [16]). The generic \(X\)-rank of \(X(\mathbb{C}) \subset \mathbb{P}^N(\mathbb{C}) \) is the minimum of all typical \(X\)-ranks and if \(x_1 \) and \(x_2 \) are typical \(X\)-rank, then every integer \(x \) with \(x_1 \leq x \leq x_2 \) is a typical \(X\)-rank ([7, Theorem 2.2]). Fix \(V \in G(r, \mathbb{N})(\mathbb{R}) \). For any \(S \subset \mathbb{P}^N(\mathbb{R}) \) let \(\langle S \rangle_{\mathbb{R}} \) denote its \(\mathbb{R}\)-linear span in the real projective space \(\mathbb{P}^N(\mathbb{R}) \) and let \(\langle S \rangle_{\mathbb{C}} \) denote its \(\mathbb{C}\)-linear span in the complex projective space \(\mathbb{P}^N(\mathbb{C}) \). We have \(\dim_{\mathbb{R}}(\langle S \rangle_{\mathbb{R}}) = \dim_{\mathbb{C}}(\langle S \rangle_{\mathbb{C}}) \) and
Let \(\langle S \rangle \subseteq \mathbb{P}^N(\mathbb{R}) \). The real \(X \)-rank \(r_{X,\mathbb{R}}(V) \) of \(V \) is the minimal cardinality of a finite set \(S \subseteq X(\mathbb{R}) \) such that \(V \subseteq \langle S \rangle \).

Proposition 3.1. Let \(V \subseteq \mathbb{P}^N(\mathbb{R}) \) be an \(r \)-dimensional \(\mathbb{R} \)-linear subspace. Let \(\rho \) be the minimal value of all \(r_{X,\mathbb{R}}(o) \), \(o \in V \). Then

(i) \(r_X(V) \leq \min\{(r + 2) r_{X,\gen}(r + 1) r_{X,\gen} + \rho \}. \)

(ii) If \(u_1, \ldots, u_k \in V \) are linearly independent, then \(r_{X,\mathbb{R}}(V) \leq (r + 2 - k) r_{X,\reg} + r_{X,\mathbb{R}}(u_1) + \cdots + r_{X,\mathbb{R}}(u_k) \).

Proof. Fix \(o \in V \) with \(r_X(o) = \rho \) and set \(a := r_{X,\gen} \). Take a non-empty open subset \(U \subseteq \mathbb{P}^N(\mathbb{R}) \) for the euclidean topology of \(\mathbb{P}^N \) such that \(r_{X,\mathbb{R}}(q) = a \) for all \(q \in U \). Fix \(q \in U \) and set \(W := \{q\} \cup V \). \(W \) is an \(\mathbb{R} \)-linear subspace, \(\dim(W) \leq r + 1 \) and \(W \supseteq V \). Since \(q \in W \cap U \), the set \(U \cap W \) is a non-empty open subset of \(W \) for the euclidean or the Zariski topology). Then we continue as in the proof of Proposition 1.1. \(\square \)

Remark 3.2. Take the the assumptions of Proposition 3.1, but look at the proof of Claim 1 in the proof of Theorem 1.2. Set \(n := \dim(X) \). We fix a proper Zariski closed subset \(T \subseteq X \). Take a non-empty open and connected subset \(E \subseteq X_{\reg}(\mathbb{R}) \) for the euclidean topology such that \(E \cap T(\mathbb{C}) = \emptyset \). \(E \) has euclidean dimension \(n \) and in particular it is a connected topological manifold of dimension \(n \). Let \(Z_E \) be the set of all \(b = (b_1, \ldots, b_a) \in E^a \) such that \(b_1, \ldots, b_a \) are linearly independent. \(Z_E \) is a topological manifold of dimension \(na \), but we do not claim that it is connected. Let \(\mathbb{I}_E \) be the set of all pairs \((b, u) \) with \(b = (b_1, \ldots, b_a) \in Z_E \) and \(u \in \langle \{b_1, \ldots, b_a\} \rangle \). Let \(\pi_E : \mathbb{I}_E \to \mathbb{P}^N(\mathbb{R}) \) denote the projection onto the second factor. Since \(\pi \) is dominant, its complex differential has rank \(N \) for a Zariski dense open subset of \(\mathbb{I} \). This open subset meets \(\mathbb{I}_E \). Hence there is \(c \in \mathbb{I}_E \) at which the complex differential of \(\pi \) has rank \(N \). The differential of \(\pi \) and of \(\pi_E \) at \(c \) are given by the same real matrix. Hence the image of \(\pi_E \) contains a non-empty euclidean subset of \(\mathbb{P}^N(\mathbb{R}) \). With this observation Theorem 1.2 is extended to the open real rank.

Acknowledgement. The author was partially supported by MIUR and GN-SAGA of INdAM (Italy).

References

1 **DEPT. OF MATHEMATICS, UNIVERSITY OF TRENTO, 38123 POVO (TN), ITALY**

E-mail address: ballico@science.unitn.it