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GEGENBAUER POLYNOMIALS FOR CERTAIN SUBCLASSES
OF BAZILEVIC FUNCTIONS ASSOCIATED WITH A
GENERALIZED OPERATOR DEFINED BY CONVOLUTION

EZEKIEL ABIODUN OYEKAN

ABSTRACT. In this paper, a class Qﬁlm (o, t), consisting of Bazilevi¢ functions

of type a and involving a certain generalized differential operator is defined by
means of Gegenbauer polynomials. Initial coefficient bounds and Fekete-Szegd
estimates for functions belonging to this class are obtained. Furthermore, upon
varying the involving parameters in our main results, a number of known and
new results are stated as corollaries.

1. INTRODUCTION AND PRELIMINARIES

Let U = {z € C: |z| < 1} be an open unit disk in C (Complex plane) and let
G(U) be the space of analytic functions in U. For a fixed number m, let G[b, d, m]
be the subclass of G(U) of functions of the form

9(2) = b+ bam 2" + bgym 1 27 4 zel, (1.1)

where b € C and d € N with G = G[0,1] and G = G[1,1]. We also let A; = A,
for d = 1 and a fixed number m = 1, denote the usual class of functions of the
form

f(z) = z—l—an 2", (1.2)
n=2
Also, let
Aim = {gGG(U) 19(2) = 2+ bggyr 2T -1 2 € U}

and let S denote the class of all functions in Ag, which are univalent in U.
Furthermore, let S* and K respectively denote the class of star-like functions and
convex functions in U such that

/
S*:{QES, Re(zg(z)) >0,26U}

9(2)
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K:{gES, Re(l+Zg,(2))>O,zeU}.

and

g'(2)
Let g and h be analytic functions in U (that is g,h € G(U)). Then the g is said
to be subordinate to h in U, written as g < h, if there exists a Schwarz function
w(z), which is analytic in U with w(0) = 0 and |w(z)| < 1, (# € U) such that
g(z) = h(w(2)). In particular, if A is univalent in U, then we get

g(z) < h(z) <= g¢(0) =h(0) and ¢(U) C h(U).
For more insight on subordination refer to [21].

Definition 1.1. [6] For function g(z) € Ay, given by

g(z) =z + Z b, 2", zeU, (1.3)
n=dm+1
the operator %gmz : Agm — Ay is defined by

L+ (m +n)(l—1) ’
\97]1,772Q<Z)—Z+ Z < 1+772<l—1) an s z € ( )

for g € Agm, m a fixed number, 0 < n; <1, § € Ny = NU{0} and d € N =
{1,2,3,-- ).

Definition 1.2. [7] Let g € Ay, d € N, 6 € NU{0} and a fixed number m, the
operator R’ is given by

Rg(z)=z+ Y B, b,2", z€U. (1.5)
n=dm+1
where
—1
Bl = 8,00) = 5o = (T )
0+ +2)- - (0+n—1)
B (n—1)!
(0 1)na
(1)n—1 '
Definition 1.3. [15] Let g(z) given by (1.3) be in Ay, then
%Rglﬂh 9(z) = (Sgl,ng * R(S) 9(2)
3 Lt (m o+ )= 1)
—_ 9 n
=2+ Y BHn_l( Tl = 1) b, 2", zeU (1.6)

n=dm+1

for 0 < < 1o, § € Ny, d € N and a fixed number m. The symbol * represents
the Hadamard product (or convolution). In this case, we have the convolution of

. 5
the Salagean operator 37, | and the Ruscheweyh operator R°.
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Definition 1.4. [8] A function f € A of the form (1.2) belongs to the class
G(a,t), if it satisfies the subordination condition

(DU FE) (DS ey - m } (1.7)

G(a,t) = {feA:

Za—l

where @ € [0,1], 3 <t <1, z € U and H(z,¢) is the Chebyshev polynomials
of the second kind. Chebyshev polynomials are generally of four kinds. They
are special functions belonging to the family of orthogonal polynomials and their
significance in numerical analysis has increased in both theoretical and practical
point of view, see [3, 20]. The Chebyshev polynomials of first and second kinds
are denoted by T,,(t) and U, (t) and respectively defined by
sin(n +1)6
T.(t) = 0 d U,(t) = ———
(t) = cosn an (t) e
for all ¢t € [—1,1], t = cos @ and n is the degree of the polynomial. For some of the
works that are related to Chebyshev polynomials of the second kind, interested

readers are referred to [0, 14, 16, 25, 26, 30]. Another special case of orthogonal
polynomials is Gegenbauer polynomials. They are representatively related to
the class Tk of typically real functions, discovered in [17]. Real-valued functions

play an important role in geometric function theory because of the relation T =
CoSpk and its role in estimating coefficient bounds where Sy denotes the class
of univalent functions in the unit disk with real coefficients and Tp = CoSg
denotes the closed convex ball of Si. Orthogonal polynomials generally have
been studied extensively as early as they were discovered by Legendre in 1784,

see [13, 19]. Recently in [5], Amourah considered the generating function of
Gegenbauer polynomials Hg(z, z), which is given by the recurrence relation
1
Hg(z,2) = zeU, (1.8)

(1 —2xz+ 22)8’

for non-zero real constant 5 and = € [—1,1]. For fixed 3, the function Hp is
analytic in U and it is expressible in Taylor series as

Hs(z,2) = Z CB(x) 2" (1.9)

where C?(x) is Gegenbauer polynomial of degree n. It is obvious that Hg gen-
erates nothing when 5 = 0 and consequently, the generating function of the
Gegenbauer polynomial is set to be

Hy(z,2) =1 —log(l — 2z2 + 2%) = Z Co%x) 2™ for B=0. (1.10)
n=0
Moreover, a normalization of a to be greater than —% is desirable (see [9, 29]).

Another form of definition for the Gegenbauer polynomial of degree n is

Ciw) =~ |20(n + 5~ 1) Oy (a) — (n + 28 — 2) O1, (v) (1.11)
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with the initial values
Clx)=1, CPl(x)=2Bz and CU(zx)=2B(1+ B)z*—p. (1.12)

With respect to the Gegenbauer polynomials C?(x), we note the following special
cases:

(i) when g = 1 we get the Chebyshev polynomials and
(ii) when § = 5, we get the Legendre polynomials.

Interested readers may consult some further works involving Gegenbauer polyno-
mials in [2, 3, 4, 23, 31, 32, 33, 34].

1.1. Problem Statement. The problem of finding the sharp bounds for the
non-linear functional |b3 — ub3| for Taylor-Maclaurin series popularly known as
the famous Fekete-Szegd problem (or inequality) has a rich historical antecedent
in geometric function theory. For its source see [10]. The Fekete-Szegd problem,
no doubt, has since received great attention by many researchers especially in
many subclasses of normalized univalent functions. Some of the papers that have
appeared in the literature include [6, 12, 14 16, 18, 24, 25, 26, 27, 28, 30)].

The main goal of this present work is to explore univalent functions associated
with Gegenbauer polynomials. Our motivation is the work of AbdulRahman et
al. [1]. In particular, the aim of this work is to provide estimates for the ini-
tial coefficients of Bazilevi¢ functions of type « in the class Qm 2, 1), involving
o 9(2) given by (1.6) defined by the Hadamard product of the
Salagean operator Sf] ., and the Ruschewegh operator R". In addition, the prob-
lem of Fekete-Szegd in this class is also considered.

the operator SR?

As a prelude to our main results, we shall need the following definition and lemma.

Definition 1.5. A function g(z) € Agm of the form (1.3) belongs to the class

Go ,(a,t), if it satisfies the subordination condition
SRy, 9(2) (SR, 9(2)) 7 1
B A X (\S 71,72 g 71,72 Ha(t —
gm 772( t) = {g € Adm sa—1 = 5( %) (1 —2tz+ 22),8

(1.13)
for0<a<1,0<m<mdeN={1,2,---},§ e N=NU{0}, 8, a are real
constants where t € [—1,1] and z € U.

Let w(z) = wiz + wez? + w3z + -+ € Q, where Q is the class of Schwarz
functions.
Lemma 1.6. [12] If w € Q, then for any complex number p,

lwa — pwi| < {1, |}

The result is sharp for the functions w(z) = 2% or w(z) = .
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2. MAIN RESULTS
Theorem 2.1. Let g € Agy, belong to the class G (a,t). Then

26t

l_
(o + 77”L)B<5+m(5)(Hi%ﬁ)—(l)1))(S

|bm+1| S

and

28(1+ B)t> + 28t — B

l—
(@ + 2m) By o (9)(FH 0 D)

452t2

_.I_
1 1+m2) (=1
(a+m)(a+ 2m)35+2m(5)(%)5
4afB?t2(m + 1)

1—
(a+m)?(a+ 2m)Bé+2m(5)(%W)6

232t a(a — 1)

(a+m)?(a+ 2m)Ba+m(5)Bé+2m(5)<%W)6

|bom 11| <

Proof. 1f g € GP t), then from (1.13), we have

m 772( )

(SR), ., 9(2)) (SRy, ,,9(2))" "

n 772 1, 772

Zal

=1+ C{(arz + [C) (B)ea + CF ()] 2" + -+, (2.1)

making use of the series expansion of SR . ¢(z) and (SR}, g(z)) appropri-
ately in (2.1) we get

EED SE N (e

{1 N i ner (1 +1(Z: 7—;82)_@1)— 1))5 b () z"_l}

3
0o 1+(m+ -1 n
2+ imet ™ Cn ( 574]}7;27(7121(1) )) b 2
=14+CPt)erz+ [CPt)er + CHB)A 2+ . (22)

Making use of binomial expansion and upon simplification, we get

> 1 [-1)\°
14 Z n0§+n_1< + (m + m2)( )) b, 2"

n=dm-+1 L+ma(l=1)
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and

{z + (M + 1) By (6) bss 2™ (1 + (m + 772)(‘”)6

1+772<l— 1)

1)
- 2m+1) Bsyam(0) (1 +1(7—]: ?‘72(7;2)_(11)— 1)) Do 22 4 }

x{L+aBHm®)(1+ﬁ$;8%%;1inmﬂzm

1+ + I—1)\° ala—1 . .
+ [O‘ Bs2m(9) ( 10_7: 77282)_(1> )> bam+1 + % Bé+m(5)bmi{| 2™

B {1 + Clﬁ(t)clz + [Clﬁ(t)02 + C’zﬁ(t)cf]zz 4. }

X {Z + Bd+m<5)bm+12m+1 (1 +1(7—7|i 7—7’;82)_@1)_ 1)>

)
i Bg+2m(5) (1 +1<7—7: ;;82)_@1)— 1)) b2m+122m+1 4. } (23)

For analytic functions

p(2) =ciz+ 2+ e oo (2.4)
It is fairly well known that if [p(z)| < 1, (z € U), then
le;| <1 for all j €N. (2.5)

Thus upon comparing the corresponding coefficients in (2.3), we have

1+ (m +m) (1 —1)\°
@ Bom(0) < L+l —1) ) e

L+ (m+mn2)(l —1)
L+n(l—1)

1
+ th§+m(5) ( > bm—i—l = Clﬂ(ﬂcl

which implies that
L+ (m+m)(l—1

(@ +m) Byym(9) ( ))5 bimi1 = CF (t)ex

L+ma(l—1)
so that
— CP(t)ey B 2fBtcy
m+1 — 5 6
- -
(0 ) Boin (0) (SHEU0)" (04 m) By (0) (EHsznlion)

(2.6)
since C7(t) = 26t. By applying (2.5) in (2.6), we have

25t

5"
1+(m+n2)(1—1)
(Oé + ”2) Bg+m(§) (—17_?172’,8_1.) )

|bm+1‘ S
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Next, we now find the bound on |bs,, 1| by using b,,,1 after appropriately com-
paring the coefficients by, 11, we have that

CP(t)ey + CH ()2

1 i—i)\ "
(0 -+ 2m) By (5) (L2200 )

(CY (1)

5
1 =
(a4 m)(co + 2m)Bsom(0) (%)

Cy (1))’ cta(m + 1)

19
1 -1
(a +m)?*(a + 2m)Bsyam(0) <%>

ala = 1)(C1 (1)’

0
2(a+m)*(e + 2m) Bs ym(0) Bs.y2m (9) (%)

b2m+1 =

+

and since CP(t) = 26t and CJ(t) = 28(1 + 5)t2 — 5 we get
(2B8(1 + B)t? — B)c? + 2ftcs

1
lf
(04 2m) By (6) (L2200

(28t)*ci

1
1+m2) (1=
(a+m)(o+ 2m)Bsom(0) (%)

(26t)*AEa(m + 1)
(o +m)%(a+ 2m)Bsiom(9) (My

b2m+1 -

+

1+m2(1-1)
ala —1)(28t)%c3

.
2( +m)?(@ + 2m) By (6) By (n) (ZERGED)

(2.7)

By applying (2.5) on (2.7) we get
26(1+ B)t*+ 20t —

5
l_
(a4 2m) Bsi2m/(9) <%?(7121(1)1)>

432t?
0
(o +m)(a + 2m) By (6) (LA )
4ot (m + 1)
0
(0 m)? (0 2m) By o (8) ( HERSD)
232t a(a — 1)
)

.
(a +m)*(a + 2m) By (0) Bstom(0) (w>

|b2m+1| S

_|_

1+n2(1-1)
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Theorem 2.2. If g(z) of the form (1.3) belongs to the class Qfl’/\g(oz,t), then

|bom41 — Mb$n+1|
< 20t

< 5 max {1,
lf
(a -+ 2m)Bé+2m(5) <%T(]lzz(l)l))

S 28ta(m+1)  ala—1)Bt 2Bt(a + 2m) By y2m(9) ’}
)

+m)? +m)?Bs (0 1+m)(-1)\°
atm e mBen) 2B 0)) (S

201+ 8)t* - 3 2[5t
20t + a+m

The result is sharp.
Proof. From (2.6),
(C (1)

26
l_
(0 2B (5)7 (R

2 _
bm+1 -

By making use of (2.7) and (2.8) we have that

Cf (s + O (DS
1)
(a + 2m) B yom (6) <w>

bom+1 — Mb$n+1 =

1+m2(1-1)
N (CY ()%}
)
1+n2) (-
(04 m){ec -+ 2m) By, (0) (L=

Clt)2Ea(m+ 1)

é
(a+m)?(a + 2m) Bsom(0) (%rg)(ll;l))

ala = 1)(C/(t)*E

2(a + m)?(a 4 2m) By (0) Bsrom(9) (%W)J
» (G} (1)1
(o +m)?[Bsim(0)]? (%ﬁf)(ﬁ)l))
so that
boms1 — ubfnﬂ
i i (1) 5 { N {CZ ) , ci®
(ot + 2m) Bs9m(0) <%) e

_am+ DO ala-DOP() i C7 (1) (e + 2m) Bs.am(9) ]Cz}

+m)? 2(a +m)?Bsm(0 14m)(1-1)\°
()t 2o mP O g mye(Bs ()] (L
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By applying (2.5) and in view of Lemma 1.6 we have that

|b2m+1 - Mb31+1|

Cf(t Cy(t) | Ol
< ()1 o 6max{1, Cﬁét; +Oé+<n)l
(a +2m)Bs2m(9) (%) !
Cam+DCM()  ale—DC() p CY (1) (o + 2m) By om(9) '}
2 2 )
(tm Aot mP B oy e o) (M0

which is equivalent to

|bom41 — Mbiz+1|

2 _
) 251 6max{1, 2(1 —i—fﬂ); 6+ Q—ft
1472) (1= o
(a —+ 2m)35+2m(5) (%)
26t a(m + 1) ala —1)pt 2Ptor + 2i) By aml ) ‘}
B +m)?2  (a+m)2Bsm(d) s )
(a +m) (v + m)%Bs 1 (9) (o +m)?[Bsym(0)]? (%)

O

Putting 8 =1, ny =n2, =0 and m = 1 in Theorem 2.1 and Theorem 2.2, we
have the following.

Corollary 2.3. If f given by (1.2) belongs to the class G} o(v, t) and taking b = a,
then

aal < 2t
77 (@4 1)Bsin(0)
and
a3 < 442 — 2t — 1 N 4¢2
~ (@ +2)Bsiom(0) (a4 1)(a+ 2)Bsiom(9)
Sat? 4o(a — 1)t

 (a+1)%(a+2)Bssam(0)  2(a+ 1)2(a + 2)Bys1(6) Bssam(0)

where By, (0) = (5ng) = (”:1),B5+2m(5) = (5+52m) = (”:2) whenever § = n.

This is the result in Theorem 2.1 of [1] for the class G(a,t) for a fized number m.

If the function f of the form (1.2) belongs to the class G (c,t) and taking
b = a, then we get

Corollary 2.4.

| 2 < 2t e d 1 42 — 1 N 2t dat

as — ua max —

3l = T Y By ram (0) T2t Tatr1l (ar1)?
ala—1)t 2(a + 2)tBsiom(9)

|

) whenever § = n.

(@ + 1)?Bsyam(®) " (@+ 1)2[Boym(0)]?

where Bsipm(0) = (5+§m) = (nzl)735+2m(5) = (H(s?m) (”Zz

This is the result in Theorem 3.2 in [1] for the class G(a,t).
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Putting § = 1 in Theorem 2.1 and Theorem 2.2, we respectively have the
following.

Corollary 2.5. [f the function g(z) of the form (1.3) belong to the class g}hm(a, t),
then

2t
(b < L () (=D \°
(0 ) By (6) (HHLERI0-0 )
and
2 _ _
[bam 1] < = 1+§n +n2)(1=1) "
N 2t>
AN\ O
(o + m) (e + 2m) By sm(0) (111;—@1%))
4at*(m + 1)
- d
lf
(0 1)2(0r+ 2m) By o (9) ( 220010 )
2t%a(a — 1)
_ _
lf
(0 )21+ 2m) By () B (9) (L2200

This is presumably a new result.

Corollary 2.6. If the function g(z) of the form (1.3) belongs to the class g;m(a, t),
then

|b2m+1 - Mb$n+1|

2t 42 — 2t — 1 2t
< 5 max 4 1, 5 + atm
1—
(a +2m) B y2m(9) (%)
2t a(m + 1) ala—1)t 2t(a + 2m) Bs i om(9) ‘}
 (a+m)?2  (a+m)2Bsim(6) —1\?
atm? et mEBem®) " op By (62 (SR )

This is presumably a new result.

3. CONCLUSION

In this work, we defined a new class consisting of Bazilevi¢ functions of type a.
The new class involved the Gegenbauer polynomials, a generalized operator and
the subordination principle. Some of the obtained results are the initial coefficient
bounds and the Fekete-Szegd estimates for functions belonging to the new class.
Upon varying various involving parameters, the results presented in this work
lead to some known results. Also, some presumably new results were exhibited
as corollaries.

Acknowledgement. The author would like to thank the editor and reviewers
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