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WHEN IS (D + I,K + I) AN S-LASKERIAN PAIR?

S. VISWESWARAN∗

Abstract. Let T be a strongly Laskerian domain such that T contains a field
K as a subring. Let I be a non-zero proper ideal of T . Let D be a subring of K.
Let S be a strongly multiplicatively closed subset of D. The aim of this article
is to determine necessary and sufficient conditions in order that (D+ I,K + I)
to be an S-Laskerian pair.

1. Introduction

The rings considered in this article are commutative with identity. Modules
considered in this article are modules over commutative rings and are unitary.
Subrings are assumed to contain the identity of the ring of which it is a subring.
We use f.g. for finitely generated.

Let us first give a brief motivation for the research work carried out in this
article. Let R be a ring and let S be a multiplicatively closed subset of R. We use
m.c. subset for multiplicatively closed subset. Let M be a module over R. Recall
that M is said to be S-finite if sM ⊆ F for some s ∈ S and some f.g. submodule
F of M [1]. Also, recall that M is called S-Noetherian if each submodule of
M is an S-finite module. We say that R is S-Noetherian if R regarded as an
R-module is S-Noetherian [1]. Many interesting and inspiring theorems on S-
Noetherian rings are contained in [1]. In [1], Anderson and Dumitrescu have
proved S-Noetherian version of Cohen’s Theorem, Eakin-Nagata Theorem, and
Hilbert Basis Theorem (see [1, Corollaries 5, 7, and Proposition 9]). Motivated
by the above mentioned research work on S-Noetherian rings, the concept of
S-Laskerian rings is introduced and studied in [18].

It is useful to recall the following definitions from the literature before we
mention a brief content of [18]. Let R be a ring. Let M be a module over R.
Recall that M is said to be a Laskerian R-module if M is a f.g. R-module and
every proper submodule of M is a finite intersection of primary submodules of
M . We say that R is a Laskerian ring if R regarded as an R-module is Laskerian
[6, Exercise 23, page 295]. A p-primary submodule N of M is said to be strongly
primary if there exists a positive integer k such that pkM ⊆ N . A f.g. R-module
M is said to be a strongly Laskerian R-module if every proper submodule of M
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is a finite intersection of strongly primary submodules of M . We say that R is
a strongly Laskerian ring if R regarded as an R-module is strongly Laskerian [6,
Exercise 28, page 298]. Heinzer and Lantz have proved several interesting and
inspiring theorems on Laskerian (respectively, strongly Laskerian) rings in [11].

Let S be a m.c. subset of a ring R. The concept of S-primary ideals of R,
that is studied in [18] is inspired by the research work on S-prime ideals of a ring
in [10]. Let q be an ideal of R with q ∩ S = ∅. Recall that q is said to be an
S-primary ideal of R if the following condition holds: there exists s ∈ S such
that for all a, b ∈ R with ab ∈ q, either sa ∈ q or sb ∈ √q [18]. If in addition,
there exist s′ ∈ S and n ∈ N such that s′(

√
q )n ⊆ q, then q is said to be an

S-strongly primary ideal of R. (In [18], an S-strongly primary ideal is referred to
as a strongly S-primary ideal.) Some basic properties of S-primary (respectively,
S-strongly primary) ideals of a ring are contained in [18]. Let I be an ideal of
R such that I ∩ S = ∅. Recall that I is said to be S-decomposable (respectively,
S-strongly decomposable) if I is a finite intersection of S-primary (respectively,
S-strongly primary) ideals of R [18, Introduction to Section 3]. (In [18], an S-
strongly decomposable ideal is referred to as a strongly S-decomposable ideal.)
Also, recall that R is said to be S-Laskerian (respectively, S-strongly Laskerian)
if for each proper ideal I of R, either I ∩ S 6= ∅ or there exists s ∈ S such that
(I :R s) is S-decomposable (respectively, S-strongly decomposable) [18]. (In, [18],
an S-strongly Laskerian ring is referred to as a strongly S-Laskerian ring.) It is
not hard to verify that any Laskerian (respectively, strongly Laskerian) ring is
S-Laskerian (respectively, S-strongly Laskerian) (see [18, Introduction to Section
3]).
D + M -constructions, a source of examples and counterexamples have been

studied by several researchers in the literature (for example, refer [4, 5, 7]). This
article is also motivated by the results proved by Barucci and Fontana in [3].

Let P be a property of rings. Let R be a subring of a ring T . We say that
(R, T ) is an P pair if A satisfies the property P for each intermediate ring A
between R and T . Let S be a m.c. subset of R. We say that (R, T ) is an S-P
pair if A satisfies the property S-P for each intermediate ring A between R and T .
The abbreviation LP (respectively, SLP) is used for Laskerian pair (respectively,
for strongly Laskerian pair). We use the abbreviation S-LP (respectively, S-SLP)
for S-Laskerian pair (respectively, for S-strongly Laskerian pair).

Let S be a m.c. subset of a ring R. Recall that S is said to be a strongly
multiplicatively closed subset of R if S∩ (

⋂
s∈S Rs) 6= ∅ [10]. We denote the group

of units of R by U(R). It is clear that U(R) is a strongly m.c. subset of R.
Let T be a strongly Laskerian domain which contains a field K as a subring.

Let I be a non-zero proper ideal of T . Let D be a subring of K. Let S be a
strongly m.c. subset of D. The aim of this article is to determine necessary and
sufficient conditions in order that (D + I,K + I) to be an S-LP.

If a set A is a subset of a set B and A 6= B, we denote it by A ⊂ B (or by
B ⊃ A). Let R be a subring of a ring T . We denote the collection of all subrings
A of T with R ⊆ A by [R, T ].
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Let S be a m.c. subset of a ring R. Let f : R → S−1R denote the usual ring
homomorphism given by f(r) = r

1
. For any ideal I of R, f−1(S−1I) is called the

saturation of I with respect to S and is denoted by SatS(I) or by S(I).
We next give a brief account of the results that are proved in this article. This

article consists of three sections including the introduction. In Section 2, we state
and prove some preliminary results that are needed for proving the main result
Theorem 3.1 of Section 3.

Let T be a strongly Laskerian domain such that T contains a field K as a
subring. Let I be a non-zero proper ideal of T . Let D be a subring of K. Let S
be a strongly m.c. subset of D. In Theorem 3.1, among other results, it is proved
that (D + I,K + I) is an S-LP if and only if (D + I,K + I) is an S-SLP if and
only if S−1D is a field and K is algebraic over D.

2. Some preliminary results

The aim of this section is to state and prove some preliminary results which
are needed for proving the main result of this article. We denote the set of all
proper ideals of a ring R by I(R) and I(R)\{(0)} by I(R)∗.

Motivated by the research work of Lu on rings and modules satisfying (accr)
[13, 14], Hamed and Hizem have introduced and investigated the concept of rings
and modules satisfying S-accr in [8]. Let M be a module over a ring R. Let
S be a m.c. subset of R. Recall that an increasing sequence of submodules of
M , N1 ⊆ N2 ⊆ N3 ⊆ · · · is said to be S-stationary if there exist s ∈ S and
k ∈ N such that sNn ⊆ Nk for all n ≥ k [8]. Recall that M is said to satisfy
S-accr (respectively, satisfy S-accr∗) if for every submodule N of M and every
f.g. (respectively, principal) ideal B of R, the increasing sequence of submodules
of M , (N :M B) ⊆ (N :M B2) ⊆ (N :M B3) ⊆ · · · is S-stationary. The ring
R is said to satisfy S-accr (respectively, satisfy S-accr∗) if R regarded as an R-
module satisfies S-accr (respectively, S-accr∗) [8]. It is worth mentioning the
following interesting results proved by Hamed and Hizem on rings and modules
satisfying S-accr in [8]. For any R-module M , the properties S-accr and S-accr∗

are equivalent [8, Proposition 3.1]. Let N be a submodule of an R-module M .
Then M satisfies S-accr if and only if N and M

N
satisfy S-accr [8, Theorem 3.2]. If

R satisfies S-accr, then M satisfies S-accr for any f.g. R-module M [8, Theorem
3.3].

It is known that a Laskerian module satisfies (accr) [13, Proposition 3.3]. Let
S be a m.c. subset of a ring R. If R is S-Laskerian, then R satisfies S-accr∗

[18, Corollary 3.9(1)] and hence, S-accr by [8, Proposition 3.1]. Let T,K, I,D, S
be as mentioned in the abstract of this article. In Theorem 3.1, we prove that
(D + I,K + I) is S-LP if and only if (D + I,K + I) is an S-ACCR∗P, where we
use the abbreviation S-ACCR∗P for S-accr∗ pair. Lemma 2.1 is used in the proof
of Theorem 3.1.

Lemma 2.1. Let T be an integral domain which contains a field K as a subring.
Let I ∈ I(T )∗. Let D be a subring of K and let S be a m.c. subset of D. Let
T1 = D+I. If T1 satisfies S-accr∗, then for each d ∈ D\{0}, S∩ (

⋂∞
n=1Dd

n) 6= ∅
and S−1D is a field.
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Proof. Assume that T1 satisfies S-accr∗. Let d ∈ D\{0}. Let a ∈ I\{0}. Since
K ⊂ T and I ∈ I(T )∗, it follows that a

dn
∈ I ⊂ T1 for all n ∈ N. Let J be the ideal

of T1 given by J = T1
a
d
. Since T1 satisfies S-accr∗ by assumption, the increasing

sequence of ideals of T1, (J :T1 d) ⊆ (J :T1 d
2) ⊆ (J :T1 d

3) ⊆ · · · is S-stationary.
Hence, there exist s ∈ S and k ∈ N such that s(J :T1 d

j) ⊆ (J :T1 d
k) for all

j ≥ k. Let j ≥ k. Observe that a
dj+1 ∈ (J :T1 d

j). From s(J :T1 d
j) ⊆ (J :T1 d

k),

we get that s a
dj+1d

k ∈ J = T1
a
d
. Hence, there exist dj ∈ D and aj ∈ I such that

s a
dj+1d

k = (dj + aj)
a
d
. Since K ∩ I = (0), we obtain that s = djd

j−k. Thus given

d ∈ D\{0}, there exist s ∈ S, k ∈ N, and dj ∈ D such that s = djd
j−k for all

j ≥ k. This proves that S ∩ (
⋂∞

n=1Dd
n) 6= ∅.

We next verify that S−1D is a field. Let d
t

(d ∈ D, t ∈ S) be a non-zero element
of S−1D. It is clear that d 6= 0. Since there exist s ∈ S and d′ ∈ D such that
s = dd′, it follows that d′

1
d
t

= s
t
∈ U(S−1D) and so, d

t
∈ U(S−1D). This proves

that S−1D is a field. �

Let M be a module over a ring R. Let n ∈ N. Recall that M is said to satisfy
n-acc if every ascending sequence of submodules of M , each of which is generated
by n elements stabilizes [12]. Also, recall that M is said to satisfy pan-acc if
M satisfies n-acc for all n ≥ 1 [12]. We say that R satisfies n-acc (respectively,
satisfies pan-acc) if R regarded as an R-module satisfies n-acc (respectively, pan-
acc).

Let S be a m.c. subset of a ring R. Let M be a module over R. Let n ≥ 1.
Recall that M is said to satisfy S-n-acc if every ascending sequence of submodules
of M , each of which is generated by n elements is S-stationary [19]. Recall that
M is said to satisfy S-pan-acc if M satisfies S-n-acc for all n ≥ 1 [19]. We say
that R satisfies S-n-acc (respectively, satisfies S-pan-acc) if R regarded as an
R-module satisfies S-n-acc (respectively, S-pan-acc). Some results on modules
satisfying S-n-acc (respectively, S-pan-acc) are available in Section 2 of [19].

Let D be an integral domain and let S be a m.c. subset of D. Recall that
D satisfies S-ascending chain condition on principal ideals (S-ACCP) if every
increasing sequence of principal ideals of D is S-stationary [9, Definition 2.1].
Hamed and Kim have proved several interesting results on integral domains sat-
isfying S-ACCP in [9]. Observe that the above definition can be extended to any
ring R (which is not necessarily an integral domain) and for any m.c. subset S
of R. It is clear that the concept S-ACCP agrees with S-1-acc.

In Theorem 3.1, we prove that (D + I,K + I) is an S-LP if and only if
(D + I,K + I) is an S-1-acc pair, where T,K, I,D, S are as mentioned in the
abstract of this article. We use Lemma 2.2 in the proof of Theorem 3.1.

Lemma 2.2. Let T,K, I,D, S, T1 be as in the statement of Lemma 2.1. If T1
satisfies S-1-acc, then for each d ∈ D\{0}, S ∩ (

⋂∞
n=1Dd

n) 6= ∅ and S−1D is a
field.

Proof. Assume that T1 satisfies S-1-acc. Let d ∈ D\{0} and let a ∈ I\{0}. Let J
be the ideal of T1 given by J = T1

a
d
. We claim that (J :T1 d

n) = T1
a

dn+1 for each
n ∈ N. Let n ∈ N. It is clear that a

dn+1d
n = a

d
∈ J and so, T1

a
dn+1 ⊆ (J :T1 d

n).
Let d′ ∈ D and a′ ∈ I be such that d′ + a′ ∈ (J :T1 dn). This implies that
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(d′ + a′)dn ∈ T1 ad . Hence, d′ + a′ ∈ T1 a
dn+1 . This shows that (J :T1 d

n) ⊆ T1
a

dn+1

and so, (J :T1 d
n) = T1

a
dn+1 . Let us denote the ideal (J :T1 d

n) by Jn for each
n ≥ 1. Observe that Jn = (J :T1 d

n) ⊆ (J :T1 d
n+1) = Jn+1. As Jn is principal

for each n ≥ 1, we obtain that J1 ⊆ J2 ⊆ J3 ⊆ · · · is an increasing sequence of
principal ideals of T1. Since T1 satisfies S-1-acc by assumption, there exist s ∈ S
and k ∈ N such that sJj ⊆ Jk for all j ≥ k. Proceeding as in the proof of Lemma
2.1, it follows that s ∈

⋂∞
n=1Dd

n and so, S∩(
⋂∞

n=1Dd
n) 6= ∅ for each d ∈ D\{0}.

Now, it follows as in the proof of Lemma 2.1 that S−1D is a field. �

Let T,K, I,D, S be as mentioned in the abstract of this article. We prove in
Theorem 3.1 that (D + I,K + I) is an S-LP if and only if (D + I,K + I) is an
S-n-acc pair for all n ≥ 1. We use Lemma 2.3 in the proof of Theorem 3.1.

Lemma 2.3. Let S be a m.c. subset of a ring R. If R is S-strongly Laskerian,
then R satisfies S-pan-acc.

Proof. Let n ∈ N. Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending sequence of ideals of
R, each of which is generated by n elements. If Ik ∩ S 6= ∅ for some k ∈ N, then
for any s ∈ Ik ∩ S, sIj ⊆ Rs ⊆ Ik for all j ≥ k. Hence, in proving that the above
ascending sequence of n-generated ideals of R is S-stationary, we can assume that
Ik∩S = ∅ for all k ∈ N. Since R is S-strongly Laskerian by hypothesis, we obtain
from (1) ⇒ (2) of [18, Proposition 3.2] that S−1R is strongly Laskerian and for
any ideal I of R with I ∩ S = ∅, SatS(I) = (I :R s) for some s ∈ S. Observe
that S−1I1 ⊆ S−1I2 ⊆ S−1I3 ⊆ · · · is an ascending sequence of n-generated
ideals of S−1R. As S−1R is strongly Laskerian, we obtain from [12, Corollary
3.6(b)] that there exists k ∈ N such that S−1Ij = S−1Ik for all j ≥ k. Hence,
SatS(Ij) = SatS(Ik) for all j ≥ k. It follows from (1) ⇒ (2) of [18, Proposition
3.2] that there exists s ∈ S such that SatS(Ik) = (Ik :R s). We claim that sIj ⊆ Ik
for all j ≥ k. Let j ≥ k. Now, Ij ⊆ SatS(Ij) = SatS(Ik) = (Ik :R s) and so,
sIj ⊆ Ik. This shows that for any n ∈ N, any increasing sequence of n-generated
ideals of R is S-stationary. Therefore, R satisfies S-pan-acc. �

Lemma 2.4. Let S be a strongly m.c. subset of a ring R. Then for any ideal I
of R, SatS(I) = (I :R s

′) for any s′ ∈ S ∩ (
⋂

s∈S Rs).

Proof. This is [19, Lemma 2.7]. �

Let R be a ring. Recall that R is said to satisfy strong accr∗ if for any ideal I of
R and any sequence < an > of elements of R, the increasing sequence of residuals
of the form (I :R a1) ⊆ (I :R a1a2) ⊆ (I :R a1a2a3) ⊆ · · · terminates [19]. Let S
be a m.c. subset of R. We recall that R is said to satisfy S-strong accr∗ if for any
ideal I of R and any sequence < an > of elements of R, the increasing sequence of
residuals of the form (I :R a1) ⊆ (I :R a1a2) ⊆ (I :R a1a2a3) ⊆ · · · is S-stationary
[19]. It is clear that if R satisfies S-strong accr∗, then R satisfies S-accr∗. If R is
S-strongly Laskerian, then R satisfies S-strong accr∗ [18, Corollary 3.9(2)].

Let T,K, I,D, S be as mentioned in the abstract of this article. We prove in
Theorem 3.1 , among other results, that (D + I,K + I) is an S-LP if and only
if (D + I,K + I) is an S-SACCR∗P where we use the abbreviation S-SACCR∗P
for S-strong accr∗ pair.
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3. When is (D + I,K + I) an S-Laskerian pair?

Let T be a strongly Laskerian domain which contains a field K as a subring.
Let I ∈ I(T )∗. Let D be a subring of K and let S be a strongly m.c. subset
of D. Let T1 = D + I. In Theorem 3.1, we determine necessary and sufficient
conditions in order that (T1, K + I) to be an S-LP.

Theorem 3.1. Let T be a strongly Laskerian domain such that T contains a field
K as a subring. Let I ∈ I(T )∗. Let D be a subring of K. Let S be a strongly
m.c. subset of D. Let T1 = D+ I. Then the following statements are equivalent:
(1) (T1, K + I) is an S-SLP.
(2) (T1, K + I) is an S-LP.
(3) (T1, K + I) is an S-ACCR∗P.
(4) S−1A is a field for each A ∈ [D,K].
(5) S−1D is a field and K is algebraic over D.
(6) (T1, K + I) is an S-SACCR∗P.
(7) (T1, K + I) is an S-n-acc pair for all n ≥ 1.
(8) (T1, K + I) is an S-1-acc pair.

Proof. It is clear that S is a strongly m.c. subset of each A ∈ [D,K] and hence,
S is a strongly m.c. subset of A+ I for each A ∈ [D,K].
(1)⇒ (2) This is clear, since any S-strongly Laskerian ring is S-Laskerian.
(2)⇒ (3) This is clear, since any S-Laskerian ring satisfies S-accr∗ by [18, Corol-
lary 3.9(1)].
(3) ⇒ (4) Let A ∈ [D,K]. Then A + I ∈ [T1, K + I]. By (3), A + I satisfies
S-accr∗. Hence, we obtain from Lemma 2.1 that S−1A is a field.
(4) ⇒ (5) Assume that S−1A is a field for each A ∈ [D,K]. As D ∈ [D,K],
it follows that S−1D is a field. Let α ∈ K. Note that D[α] ∈ [D,K]. As
S−1(D[α]) = (S−1D)[α] is a field, we get that α is algebraic over S−1D and so, α
is algebraic over D. Therefore, K is algebraic over D.
(5) ⇒ (1) Assume that S−1D is a field and K is algebraic over D. Then K is
algebraic over S−1D and so, K is integral over S−1D. Let A ∈ [D,K]. Since
S−1D ⊆ S−1A, we get that K is integral over the integral domain S−1A. Hence,
we obtain from [2, Proposition 5.7] that S−1A is a field.

Let R ∈ [T1 = D + I,K + I]. Then R = A + I for some A ∈ [D,K]. It is
clear that S−1R = S−1A + I. Note that S−1R is a subring of T , I is an ideal
common to both T and S−1R, and T is strongly Laskerian by hypothesis. From
S−1R

I
∼= S−1A is a field, we obtain from [16, Theorem 8 and Corollary 9] that

S−1R is strongly Laskerian. Moreover, by hypothesis, S is a strongly m.c. subset
of D and so, S is a strongly m.c. subset of R. Hence, we obtain from [19, Lemma
2.7] that there exists s ∈ S such that SatS(J) = (J :R s) for any ideal J of
R. It now follows from (2) ⇒ (1) of [18, Proposition 3.2] that R is S-strongly
Laskerian. Therefore, (T1, K + I) is an S-SLP.
(1) ⇒ (6) This is clear, since any S-strongly Laskerian ring satisfies S-strong
accr∗ by [18, Corollary 3.9(2)].
(6)⇒ (3) This is clear, since S-strong accr∗ implies S-accr∗.
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(1)⇒ (7) This follows immediately, since any S-strongly Laskerian ring satisfies
S-n-acc for all n ≥ 1 by Lemma 2.3.
(7) ⇒ (8) This is clear, since if a ring satisfies S-n-acc for all n ≥ 1, then it
satisfies S-1-acc.
(8)⇒ (4) Let A ∈ [D,K]. As A+ I ∈ [T1, K + I], by (8), A+ I satisfies S-1-acc.
Hence, we obtain from Lemma 2.2 that S−1A is a field. �

We provide Example 3.2 to illustrate that (4) ⇒ (3) (respectively, (4) ⇒ (8))
of Theorem 3.1 can fail to hold if S is a strongly m.c. subset is omitted in the
hypothesis of Theorem 3.1.

Example 3.2. Let T = Q[X] be the polynomial ring in one variable X over Q.
Let I = XT . Let D = Z and let S = Z\{0}. Let T1 = Z + I. Then S−1A is a
field for each A ∈ [Z,Q] but T1 does not satisfy S-accr∗ and T1 does not satisfy
S-1-acc.

Proof. It is clear that S = Z\{0} is a m.c. subset of Z. Let A ∈ [Z,Q]. Then
S−1A = Q is a field. From

⋂∞
n=1 Z2n = (0), it follows from Lemma 2.1 (respec-

tively, Lemma 2.2) that T1 does not satisfy S-accr∗ (respectively, T1 does not
satisfy S-1-acc). �

Corollary 3.3. Let T,K, I,D, T1 be as in the statement of Theorem 3.1. Then
the following statements are equivalent:
(1) (T1, K + I) is an SLP.
(2) (T1, K + I) is an LP.
(3) (T1, K + I) is an ACCR∗P.
(4) A is a field for each A ∈ [D,K].
(5) D is a field and K is algebraic over D.
(6) (T1, K + I) is an SACCR∗P.
(7) (T1, K + I) is an n-acc pair for all n ≥ 1.
(8) (T1, K + I) is an 1-acc pair.

Proof. For any ring R, any m.c. subset S ⊆ U(R) is a strongly m.c. subset of R.
Each one of the ring-theoretic property P : strongly Laskerian, Laskerian, strong
accr∗, accr∗, n-acc (n ∈ N) is such that R has P if and only if R has S-P. Hence,
the proof of this corollary follows immediately from Theorem 3.1. �

Let T,K, I,D, T1 be as in the statement of Theorem 3.1. If (T1, T ) is an SLP,
then it is clear that (T1, K + I) is an SLP. We provide Example 3.4 to illustrate
that (T1, K + I) is an SLP need not imply that (T1, T ) is an SLP.

Example 3.4. Let K = Q(
√

2). Let T = K[X, Y ] be the polynomial ring in two
variables X, Y over K. Let I = (1 + XY )T . Let D = Q. Let T1 = Q + I. Then
(T1, K + I) is an SLP but (T1, T ) is not an SLP.

Proof. Since the field K is algebraic over the field Q, it follows from (5)⇒ (1) of
Corollary 3.3 that (T1, K+I) is an SLP. Let B = K[X]+I. Since X /∈ U(K[X]),
it follows from the proof of [17, Proposition 1.3] that B does not satisfy (accr)
and hence, B is not Laskerian by [13, Proposition 3]. As B ∈ [T1, T ], it follows
that (T1, T ) is not an SLP. �
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We use the abbreviation NP for Noetherian pair and S-NP for
S-Noetherian pair. Let T be an integral domain which contains a field K as a
subring. Let D be a subring of K and let S be a m.c. subset of D. Let I ∈ I(T )∗.
Let T1 = D + I. We prove in Theorem 3.5 that (T1, T ) is an S-NP if and only if
(T1, T ) is an NP.

Theorem 3.5. Let T be an integral domain such that T contains a field K as a
subring. Let D be a subring of K and let S be a m.c. subset of D. Let I ∈ I(T )∗.
Let T1 = D + I. Then the following statements are equivalent:
(1) (T1, T ) is an S-NP.
(2) T1 is S-Noetherian.
(3) D is a field and T1 is S-Noetherian.
(4) T1 is Noetherian.
(5) (T1, T ) is an NP.

Proof. (1)⇒ (2) This is clear.
(2)⇒ (3) Assume that T1 is S-Noetherian. By hypothesis, I ∈ I(T )∗. It is clear
that I ∈ I(T1)∗. As T1 is S-Noetherian, there exist s ∈ S and a f.g. ideal J of
T1 such that sI ⊆ J ⊆ I. Since s ∈ U(K) ⊆ U(T ) and I ∈ I(T )∗, it follows
that sI = I. Hence, I = J is a f.g. ideal of T1. If I = I2, then it follows from
[15, Exercise 2.1, page 13] that I = T1e for some idempotent element e of T1.
Since T1 is an integral domain, we obtain that e ∈ {0, 1} and this implies that
I ∈ {(0), T1}. This is impossible, since I ∈ I(T1)∗. Therefore, I 6= I2. As I is a f.g.

ideal of T1, there exist a1, . . . , ak ∈ I such that I =
∑k

i=1 T1ai =
∑k

i=1(D+I)ai ⊆
(
∑k

i=1Dai)+I
2 ⊆ I. Therefore, I = (

∑k
i=1Dai)+I

2. Hence, I
I2

=
∑k

i=1D(ai+I
2)

is a f.g. D-module. Observe that I
I2

=
∑k

i=1D(ai + I2) ⊆
∑k

i=1K(ai + I2) ⊆ I
I2

.

Hence, I
I2

is a finite-dimensional vector space over K. As I
I2

is isomorphic to a
direct sum of a finite number of copies of K, we get that K is a f.g. D-module.
It follows from (iv) ⇒ (i) of [2, Proposition 5.1] that K is an integral extension
of D. Therefore, we obtain from [2, Proposition 5.7] that D is a field.
(3) ⇒ (4) Assume that D is a field and T1 is S-Noetherian. As D is a field, it
follows that S ⊆ U(D) ⊆ U(T1). Since T1 is S-Noetherian, we obtain from [1,
Proposition 2(e)] that T1 is Noetherian.
(4) ⇒ (5) Assume that T1 is Noetherian. Let A ∈ [T1, T ]. Let a ∈ I\{0}. Then
aA ⊆ I ⊂ T1. Hence, A ⊂ 1

a
T1. Therefore, A is a submodule of a f.g. T1-module.

Since T1 is Noetherian, we get that 1
a
T1 is a Noetherian T1-module and so, A is

a Noetherian T1-module. As any ideal of A is also an T1-module, it follows that
A satisfies a.c.c. on ideals of A. Hence, A is Noetherian. Therefore, (T1, T ) is an
NP.
(5)⇒ (1) This is clear. �
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