TY - JOUR
AU - Ouattara, Moussa
AU - Savadogo, Souleymane
PY - 2020/04/03
Y2 - 2020/06/05
TI - Evolution train algebras
JF - Gulf Journal of Mathematics
JA - GJOM
VL - 8
IS - 1
SE - Articles
DO -
UR - https://gjom.org/index.php/gjom/article/view/299
SP - 37-51
AB - Through this paper, we show that the criteria for real evolution algebra to be a baric algebra can be extended to any evolution algebra over a commutative field of characteristic ≠2. Then we prove that an evolution algebra E is a train algebra of rank r + 1 if and only if the kernel of its weight function is nil of nil-index r > 1. We also study special train evolution algebra and characterize idempotents, power-associativity and automorphism in evolution train algebra. Finally we classify up to dimension 5, indecomposable evolution nil-algebra of nil-index 4 that are not power-associative.
ER -