TY - JOUR
AU - Charkani, Mohammed
AU - Kabore, Joel
PY - 2020/09/01
Y2 - 2020/09/21
TI - Primitive idempotents and constacyclic codes over finite chain rings
JF - Gulf Journal of Mathematics
JA - GJOM
VL - 8
IS - 2
SE - Articles
DO -
UR - https://gjom.org/index.php/gjom/article/view/434
SP - 55-67
AB - Let R be a commutative local finite ring. In this paper, we construct the complete set of pairwise orthogonal primitive idempotents of R[X]/ <g> where g is a regular polynomial in R[X]. We use this set to decompose the ring R[X]/ <g> and to give the structure of constacyclic codes over finite chain rings. This allows us to describe generators of the dual code C' of a constacyclic code C and to characterize non-trivial self-dual constacyclic codes over finite chain rings.
ER -